Errata for "Quantum Walks and Search Algorithms" by Renato Portugal, Springer 2013

January 28, 2015

Chapter 5

1. Section 5.1.4 Other Coins. Exercise 5.7. Page 75: Equation

$$
\left|\widetilde{\Psi}_{k}(t)\right\rangle=\widetilde{C}_{k}\left|\widetilde{\Psi}_{k}(0)\right\rangle
$$

must be replaced by

$$
\left|\widetilde{\Psi}_{k}(t)\right\rangle=\left(\widetilde{C}_{k}\right)^{t}\left|\widetilde{\Psi}_{k}(0)\right\rangle .
$$

It is missing power t. (Pointed out by Tharso Dominisini Fernandes)

Chapter 6

1. Section 6.3.2: Equations (6.94) and (6.95) are correct in general only if $\left\{\left|\phi_{a, \vec{k}}\right\rangle\right\}$ is an orthonormal basis. In the previous Section, we have described a non-orthonormal basis with the same notation. Fortunately, we have used Equation (6.94) only in the subspace associated with eigenvalues ± 1, which is spanned by orthonormal vectors. Equations (6.96) to (9.103) are correct. (Pointed out by Yangyi Hu)

Chapter 8

1. Section 8.2 Analysis of the Evolution. Page 152, line 3: Add at the end of item 1 "Any other eigenvector with eigenvalue 1 must be orthogonal to $|D\rangle\left|v_{0}\right\rangle$ ".
2. Section 8.3 Finite Two-Dimensional Lattice. Page 158: There are missing terms in Equation (8.48)

Chapter 9

1. Section 9.1 Classical Hitting Time. Page 166: The identity in the line before Equation (9.2) should be

$$
\sum_{t=0}^{\infty} t \alpha^{t}=\frac{\alpha}{(1-\alpha)^{2}}
$$

It is missing α in the denominator. (Pointed out by Tharso Dominisini Fernandes)
2. Section 9.1.1 Hitting Time using the Stationary Distribution. Exercise 9.3: The minus sign in Equation

$$
M^{-1}=\sum_{t=0}^{\infty} P^{t}-\mathbf{1} \cdot \boldsymbol{\pi}^{T}
$$

must be replaced by plus sign. The correct expression is

$$
M^{-1}=\mathbf{1} \cdot \pi^{T}+\sum_{t=0}^{\infty} P^{t}
$$

(Pointed out by Tharso Dominisini Fernandes)
3. Further Reading. Page 192: Ref. [46] claims that the finding problem can be solved with a quadratic speedup even removing restrictions (1) state transitivity, (2) only one marked vertex. There is a gap in the proof in this case and there might exist counterexamples. (Information provided by Maris Ozols)

