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Outline of the Mini-course

I Review on graph coloring

I Coined quantum walks on graphs

I Staggered quantum walks on graphs

I Spatial search algorithm

I Equivalence of discrete-time QWs



Today’s Outline

I Coined quantum walks on class-2 graphs
I Coined quantum walks on class-1 graphs
I Locality
I Quasi-periodicity
I Limiting probability distribution
I Mixing time
I Interesting problems



Coined Quantum Walks on Graphs

Definition of the standard version: U = S · C or U = S · (I ⊗ C)

Note for coined quantum walks:
1. For a class-1 graph G, the walk is defined on G or D(G)

(symmetric digraph).
2. For a class-2 graph G, the walk must be defined on the

associated symmetric digraph D(G) using the arc notation.

Since coined quantum walks on both class-1 and class-2
graphs can be defined on the associated symmetric digraph
D(G), we start by this general definition.



Definition of the Standard Coined Quantum Walk [1,2]
1. Let HA be the Hilbert space associated with the symmetric

digraph D(G). The computational basis is

HA = span
{
|a〉 : a ∈ A(D(G))

}
, dim(HA) = |A| = 2|E |.

The walker steps on arcs (not on vertices).
2. The evolution operator is U = SC.
3. The flip-flop shift operator is S|a〉 = |ā〉, where ā is the

reversed arc of a. S is a permutation and involutory
(S2 = I)

4. C is the coin operator. The Grover coin is

C|a〉 =
∑
b∈A

tail(b)=tail(a)

(
2

d+(tail(a))
− δa,b

)
|b〉 (a ∈ A).

[1] Severini, Hancock et.al, Krovi&Brun, Konno et.al, ...
[2] R. Portugal. Quantum Walks and Search Algorithms, 2nd edition, Springer, 2018.



Continuation of the definition

5. The state of the walk at time t (integer) is

|ψ(t)〉 = U t |ψ(0)〉,

where |ψ(0)〉 is the initial state.
6. The probability of finding the walker on an arc a after t

steps is
pa(t) =

∣∣〈a∣∣ψ(t)
〉∣∣2 .

7. The probability of finding a vertex v after t steps is

pv (t) =
∑
a∈A

tail(a)=v

∣∣〈a∣∣ψ(t)
〉∣∣2 .



Notes on the definition
1. The sum over arcs in the definition

pv (t) =
∑
a∈A

tail(a)=v

∣∣〈a∣∣ψ(t)
〉∣∣2

is equivalent to adding up over all coin values (see class 1).
2. If the walker is on any arc whose tail is v , we have enough

information to find v . We cannot additionally consider the
arcs whose heads are v because that would introduce an
indeterminacy.

3. The coin need not be the Grover coin (Fourier coin,
Hadamard coin, ...)

4. S can be persistent (non flip-flop)

S|v ,w〉 =
∣∣w , v ′〉.

S is a permutation but is not involutory.



Alternative notation - still arc notation

1. Let HA be the Hilbert space associated with the symmetric
graph D(G). The computational basis is

HA = span
{
|v ,w〉 : (v ,w) ∈ A(D(G))

}
,

where |v ,w〉 is equivalent to |(v ,w)〉.
2. The evolution operator is U = SC.
3. The flip-flop shift operator is S|v ,w〉 = |w , v〉, where

(v ,w) ∈ A(D(G)).
4. C is the coin operator. The Grover coin is

C|v ,w〉 =
∑

v ′∈N+(v)

(
2

d+(v)
− δw ,v ′

)∣∣v , v ′〉,
where (v ,w) ∈ A(D(G)).



Continuation of the alternative notation

5. The state of the walk at time t (integer) is

|ψ(t)〉 = U t |ψ(0)〉,

where |ψ(0)〉 is the initial state.
6. The probability of finding the walker on an arc (v ,w) after t

steps is
p(v ,w)(t) =

∣∣〈v ,w∣∣ψ(t)
〉∣∣2 .

7. The probability of finding a vertex v after t steps is

pv (t) =
∑

w∈N+(v)

∣∣〈v ,w∣∣ψ(t)
〉∣∣2 .

Note: The alternative notation cannot be used for multigraphs
because (v ,w) denotes only one arc.



Matrix Representation of the Operators S and C

The matrix representation depends on the order of the
computational basis CB:

1. Take CB = {(v1,w1), (w1, v1), (v2,w2), (w2, v2), ...}. Then

S =

 X
X

. . .


S is block-diagonal but C is not.

2. Take CB = {(v1,w1), ..., (v1,wk ), (w1,w ′1), ..., (w1,w ′`), ...}.
Then

C =

 C1
C2

. . .


C is block-diagonal but S is not. S is a permutation matrix.



Implementation of Coined Walks in Python
A is the adjacency matrix of a graph (no multiple edges)



Implementation of Coined Walks in Python



Implementation of Coined Walks in Python



Coined Walks on Class-1 Graphs
Let G be a simple graph and let {M1, ..,M∆} be a partition of
E(G) into matchings, where ∆ = χ′(G). Colors are c=1,...,∆.

1. The Hilbert space of the coined model is H = HV ⊗HC in
the position-coin notation. The computational basis is

H = span
{
|v , c〉 : v ∈ V (G), c ∈ {1, ...,∆}

}
.

2. The evolution operator is U = SC.
3. The flip-flop shift operator is S|v , c〉 = |v ′, c〉, where c is

the color of edge {v , v ′}.
4. C is the coin operator. The Grover coin is

C|v , c〉 = |v〉 ⊗
∑

c′∈Cv

(
2

d(v)
− δc,c′

)∣∣c′〉,
where c ∈ Cv and Cv is the set of colors of the edges
incident to v .



Continuation of Coined Walks on Class-1 Graphs

5. The state of the walk at time t (integer) is

|ψ(t)〉 = U t |ψ(0)〉,

where |ψ(0)〉 is the initial state.
6. The probability of finding the walker on a vertex v after t

steps is
pv (t) =

∑
c∈Cv

∣∣〈v , c∣∣ψ(t)
〉∣∣2 ,

Cv is the set of colors of the edges incident to v .

Note: The definition can be used for multigraphs if we consider
multigraphs with χ′ = ∆.



Coined Walks on ∆-regular Class-1 Graphs
Let {M1, ..,M∆} be a partition of E(G) into perfect matchings,
where ∆ = χ′(G).

We can simplify the definition of the coin operator:

Definition
1. The evolution operator is U = S · (I ⊗ C).

2. I ⊗ C is the coin operator. The Grover coin is

C = 2|u〉〈u| − I∆, where |u〉 =
1√
∆

∆∑
c′=1

∣∣c′〉.
Equivalently

C|c〉 =
∆∑

c′=1

(
2
∆
− δc,c′

)∣∣c′〉.
3. The remaining items are the same as before.



Uniquely-defined Coined Quantum Walks
I From graph theory: There are graphs that are uniquely

k -edge-colorable
I (Thomason [1]) For k 6= 3, only paths, cycles and stars are

uniquely k -edge-colorable.
I (Tutte, Belcastro&Haas [2]) There are infinitely many

uniquely 3-edge colorable cubic non-planar triangle-free
graphs.

I (Greenwell&Kronk [3]) For every uniquely k -edge colorable
graph G 6= K3, χ′(G) = ∆(G) = k .

I The uniquely-defined QWs are QWs on uniquely
k -edge-colorable class-1 graphs using the flip-flop shift
and Grover coin.

[1] A. Thomason, Hamiltonian cycles and uniquely edge colourable graphs, Annals
Disc. Math. 3 (1978), 259-268.
[2] S.M. Belcastro and R. Haas, Triangle-free uniquely 3-edge colorable cubic graphs,
arXiv:1508.06934.
[3] D. Greenwell and H.V. Kronk, Uniquely line-colorable graphs, Canad. Math. Bull 16
(1973), 525-529.



Locality
Intuitively, the walker must move only to neighboring vertices
(class 1) or neighboring arcs (class 2).

Class-1 graphs (assume the walker in on a vertex):
I The coin operator is local because does not shift the

walker (action only on the internal space).
I The shift operator is local because it follows the adjacency

matrix.
.

Class-2 graphs
(
assume the walker is on the arc (v , v ′)

)
:

I The coin operator spreads the walker’s position over the
arcs whose tails are v .

I The shift operator shift the walker to (v ′, v).

Note: In the arc notation, the action of the coin is visible.



Locality – Formal definition in the arc notation

Definition
An operator A on the Hilbert space HA is local when〈
a1
∣∣A∣∣a2

〉
6= 0 only if the pair of arcs a1 and a2 are adjacent.

Adjacent arcs: • ×←→
∗
•, ×←− • ∗−→, ×−→ • ∗−→, ×−→ • ∗←−

Non-adjacent arcs: ×−→ • −→ • ∗−→

Note 1: The shift S and the coin C are local operators.

Note 2: The evolution operator U is nonlocal in the arc notation.
U is local if S is flip-flop.



Periodicity of QWs on Finite Graphs

Definition
The quantum walk dynamic is periodic if there is a fundamental
period t0 ∈ Z+ and a real parameter α such that U t0 = e2πiαI.

It follows that
∣∣〈ψ(0)

∣∣ψ(nt0)
〉∣∣2 = 1 for all positive integer n and

for any choice of the initial state |ψ(0)〉.

Theorem
The discrete-time quantum-walk dynamic on finite graphs with
evolution operator U is periodic if the arguments of the
eigenvalues of U are rational multiples of 2π.

Periodicity is rare.

Periodicity in cycles and 2D cyclic lattices (Kendon et.al),
bipartite graphs (Kubota), some negative results (Saito)



Quasi-Periodicity of QWs on Finite Graphs
Definition
The quantum walk dynamic is quasi-periodic if for any fixed
positive number ε there is a time step t such that

∥∥U t − I
∥∥ ≤ ε.

The norm of operator U is

‖U‖ = max〈
ψ
∣∣ψ〉=1

∣∣〈ψ|U|ψ〉∣∣
Theorem
Discrete-time quantum-walk dynamics on finite graphs are
quasi-periodic.

Lemma
Given a positive number ε and unit complex numbers eiθk for
1 ≤ k ≤ N and N ∈ Z+, there exists t ∈ Z+ such that

max
k

∣∣∣eitθk − 1
∣∣∣ ≤ ε.



Limiting Probability Distribution

I The limit limt→∞ pv (t) usually doesn’t exit.
I The average probability distribution is defined as

p̄v (T ) =
1
T

T−1∑
t=0

pv (t).

I The limiting probability distribution is

π(v) = lim
T→∞

p̄v (T ).

Fact
I The limit exists for all graphs.
I Usually the limiting probability depends on the initial state



Limiting Probability Distribution

Example: limiting probability distribution of a coined QW as
function of the Hamming weight on the hypercube with N = 232

(|ψ(0)〉 = |0〉).



Quantum mixing time [1]

The quantum mixing time is

τε = min
{

T | ∀t ≥ T ,
∥∥p̄v (t)− πv

∥∥ ≤ ε},
where ∥∥p − q

∥∥ =
1
2

N∑
v=1

|pv − qv | .

[1] D. Aharonov et al. Quantum Walks on Graphs. Proceedings of ACM-STOC’01,
50-59, 2001.



Example: Quantum mixing time on cycles

Blue curve:
∥∥p̄v (t)− πv

∥∥ as a function of t (usually 1/t)

Black curve:
∥∥pv (t)− πv

∥∥ as a function of number of steps t



Quantum and classical mixing time

Comparing quantum mixing time with classical:

τε N-cycle 2D lattice Hypercube

Quantum O
(

N log N
ε

)
O
(√

N log N
ε

)
O
(

log N
ε

)
Classical O

(
N2 log 1

ε

)
O
(
N log 1

ε

)
O
(

log N log log N
ε

)



QW on Graphs: Interesting Problems

I Determine the limiting probability distribution πv on graphs
I Analyze the mixing time and related times
I Find graphs with periodic evolution

It is also interesting (we have not discussed the details):
I Analyze the evolution of the standard deviation of pv (t) and

other statistics
I Find graphs with perfect state transfer and fractional revival
I Find graphs with instantaneous uniform mixing
I Find algorithmic applications: searching and other

problems



Final comments

I We have formally defined coined QWs
I The arc notation can be used for any multigraph

• The locations of the walker are the arcs
I Class-2 graphs may use the position-coin notation

• The locations of the walker are the vertices
• The coin space is an internal (hidden) space

I It is easy to implement the coined model in Python
I We have defined:

• Locality
• Quasi-periodicity
• Limiting probability distribution
• Mixing time

I Tomorrow the focus will be on the staggered model



Thank you

Questions?

Questions can be sent by email to Portugal@Lncc.Br


