CRM Montreal 2022

Quantum Walks and Graph Coloring

Renato Portugal (LNCC)

Tuesday

Outline of the Mini-course

» Review on graph coloring

» Coined quantum walks on graphs
» Staggered quantum walks on graphs
» Spatial search algorithm

» Equivalence of discrete-time QWs

Today’s Outline

vVvVvYVvyVvVvVvVvyYyy

Coined quantum walks on class-2 graphs
Coined quantum walks on class-1 graphs
Locality

Quasi-periodicity

Limiting probability distribution

Mixing time

Interesting problems

Coined Quantum Walks on Graphs

Definition of the standard version: U=S-CorU=S-(I® C)

Note for coined quantum walks:
1. For a class-1 graph G, the walk is defined on G or D(G)
(symmetric digraph).
2. For a class-2 graph G, the walk must be defined on the
associated symmetric digraph D(G) using the arc notation.

Since coined quantum walks on both class-1 and class-2
graphs can be defined on the associated symmetric digraph
D(G), we start by this general definition.

Definition of the Standard Coined Quantum Walk [1,2]

1. Let H 4 be the Hilbert space associated with the symmetric
digraph D(G). The computational basis is

Ha=span{|a): ac A(D(G))}, dim(H4) = |Al=2|E|.

The walker steps on arcs (not on vertices).
2. The evolution operator is U = SC.

3. The flip-flop shift operator is S|a) = |a), where a is the
reversed arc of a. S is a permutation and involutory
(S2=1)

4. Cis the coin operator. The Grover coin is

Clay= > (Cﬁ(tf“(a))—aa,b)m (ac A).

beA
tail(b)=tail(a)

[1] Severini, Hancock et.al, Krovi&Brun, Konno et.al, ...
[2] R. Portugal. Quantum Walks and Search Algorithms, 2nd edition, Springer, 2018.

Continuation of the definition

5. The state of the walk at time t (integer) is

(1)) = U'(0)),

where [1(0)) is the initial state.

6. The probability of finding the walker on an arc a after t
steps is

palt) = |(alv ()"

7. The probability of finding a vertex v after t steps is

p(t)= > [(alu().

acA
tail(a)=v

Notes on the definition

1. The sum over arcs in the definition

p(t)= > [(alu()]®

acA
tail(a)=v

is equivalent to adding up over all coin values (see class 1).

2. If the walker is on any arc whose tail is v, we have enough
information to find v. We cannot additionally consider the
arcs whose heads are v because that would introduce an
indeterminacy.

3. The coin need not be the Grover coin (Fourier coin,
Hadamard coin, ...)

4. S can be persistent (non flip-flop)
Slv,w) = |w, V).

S is a permutation but is not involutory.

Alternative notation - still arc notation

1. Let H 4 be the Hilbert space associated with the symmetric
graph D(G). The computational basis is

Ha =span{|v,w) : (v,w) € A(D(G))},

where |v, w) is equivalent to |(v, w)).

2. The evolution operator is U = SC.

3. The flip-flop shift operator is S|v, w) = |w, v), where
(v,w) € A(D(G)).

4. Cis the coin operator. The Grover coin is

Clv,w) = Z (d+2(v) — 5W,v/>

v'ENT(v)

v,v'),

where (v, w) € A(D(G)).

Continuation of the alternative notation

5. The state of the walk at time t (integer) is

[0(8)) = U'4(0)),

where |¢(0)) is the initial state.

6. The probability of finding the walker on an arc (v, w) after ¢
steps is

2
p(v,w)(t) = |<V7 W‘¢(t)>‘ .
7. The probability of finding a vertex v after t steps is

pu(t)= > [(vowle()f.

weN+(v)

Note: The alternative notation cannot be used for multigraphs
because (v, w) denotes only one arc.

Matrix Representation of the Operators S and C

The matrix representation depends on the order of the
computational basis CB:
1. Take CB = {(V1, W1), (W1, V1), (Vg, W2), (Wg, VQ)7 } Then

X
S= X

S is block-diagonal but C is not.
2. Take CB = {(v1,wy), ..., (vy, wk), (wy, wg), ..., (w1, wp), ...}
Then
Cy

C= Cz

C is block-diagonal but S is not. S is a permutation matrix.

Implementation of Coined Walks in Python
A is the adjacency matrix of a graph (no multiple edges)

def ShiftOperator(AdjMatrix):
n = AdjMatrix.shape[0]

CB = [[v,w] for v in range(n) for w in range(n) if AdjMatrix[v,w]==1]
= len(CB)
= sp.sparse.csr_matrix((N, N))
or j in range(N):

S[j,CB.index([CB[jI[1],CB[j1[0]])] =1
return S

N
S
f

from scipy.linalg import block diag
def CoinOperator(AdjMatrix):
n AdjMatrix.shape[0]
G = networkx.from numpy matrix(AdjMatrix)
L = [GroverOperator(G.degree(i)) for i in range(n)]
return block diag(*L)

def GroverOperator(N):
return sympy.Rational(2,N)*sympy.ones(N)-sympy.eye(N)

def EvolutionOperator CoinedModel(AdjMatrix):
return ShiftOperator(AdjMatrix)*CoinOperator(AdjMatrix)

Implementation of Coined Walks in Python

In [1]: import numpy as np
import scipy as sp
import scipy.linalg
import networkx
import sympy
import matplotlib.pyplot as plt

In [2]: #G = networkx.complete graph(4)

= networkx.Graph()

.add_nodes_from([0,1,2, 3])

.add_edge(0, 1)

.add_edge(0, 2)

.add_edge(1, 2)

.add_edge(0, 3)

networkx.draw(G,with_labels=True, font weight='bold")

#
G
G
G
G
G
G

In [6]: A = networkx.linalg.graphmatrix.adjacency matrix(G) # Sparse matrix

Implementation of Coined Walks in Python

In [9]: S = ShiftOperator(A)
sympy.Matrix(S.todense())

out[9l: T 0 0 0 10 0 0 0 0
0 0 0 0 0 1.0 0 0
0 0 0 0 0 0 0 1.0
1.0 0 0 0 0 0 0 0
0 0 0 0 0 0 1.0 0
0 1.0 0 0 0 0 0 0
0 0 0 0 1.0 0 0 0
lo 0o 10 0 0 0 O O]
In [10]: C = CoinOperator(A)
sympy.Matrix(C)
outfl0l: -+ 22 0 0 0 0 0
2 4 2 00000
2 2 -1 oo0oo0o00
0 0 0O 0 1 0 0 0
0 0 0O 1 0 0 0 0
0 0 0O 0 0 0 1 0
0 0 0O 0 0 1 00
| 0 0 0O 0 0 0 0 1]

Coined Walks on Class-1 Graphs
Let G be a simple graph and let {My, .., Ma} be a partition of
E(G) into matchings, where A = x/(G). Colors are c=1,...,A.

1. The Hilbert space of the coined model is H = Hy ® H¢ in
the position-coin notation. The computational basis is

H =span{|v,c):ve V(G), ce{1,..,A}}.

2. The evolution operator is U = SC.

3. The flip-flop shift operator is S|v, c) = |V/, c), where cis
the color of edge {v, v'}.

4. C s the coin operator. The Grover coin is
lvo) =l 3= (oy e) I0)
CIECV d(V) 7 7

where ¢ € C, and Cy is the set of colors of the edges
incident to v.

Continuation of Coined Walks on Class-1 Graphs

5. The state of the walk at time t (integer) is

(1)) = U'(0)),

where [¢(0)) is the initial state.

6. The probability of finding the walker on a vertex v after ¢
steps is

pu(t) = [{v.clu() [,

ceCy

Cy is the set of colors of the edges incident to v.

Note: The definition can be used for multigraphs if we consider
multigraphs with ' = A.

Coined Walks on A-regular Class-1 Graphs
Let {My, .., Ma} be a partition of E(G) into perfect matchings,
where A = \/(G).

We can simplify the definition of the coin operator:
Definition

1. The evolution operatoris U= S - (I® C).
2. |® C is the coin operator. The Grover coin is

A
C = 2/u)(u| - In, where |u>:\/1zz).
c'=1

Equivalently A

Cle)y=>_ (i - 5C,C/>).

c'=1

3. The remaining items are the same as before.

Uniquely-defined Coined Quantum Walks

>

>

| 4

From graph theory: There are graphs that are uniquely
k-edge-colorable

(Thomason [1]) For k # 3, only paths, cycles and stars are
uniquely k-edge-colorable.

(Tutte, Belcastro&Haas [2]) There are infinitely many
uniquely 3-edge colorable cubic non-planar triangle-free
graphs.

(Greenwell&Kronk [3]) For every uniquely k-edge colorable
graph G # Kz, X'(G) = A(G) = k.

The uniquely-defined QWs are QWs on uniquely
k-edge-colorable class-1 graphs using the flip-flop shift
and Grover coin.

[1] A. Thomason, Hamiltonian cycles and uniquely edge colourable graphs, Annals
Disc. Math. 3 (1978), 259-268.

[2] S.M. Belcastro and R. Haas, Triangle-free uniquely 3-edge colorable cubic graphs,
arXiv:1508.06934.

[3] D. Greenwell and H.V. Kronk, Uniquely line-colorable graphs, Canad. Math. Bull 16
(1973), 525-529.

Locality

Intuitively, the walker must move only to neighboring vertices
(class 1) or neighboring arcs (class 2).

Class-1 graphs (assume the walker in on a vertex):

» The coin operator is local because does not shift the
walker (action only on the internal space).

» The shift operator is local because it follows the adjacency
matrix.

Class-2 graphs (assume the walker is on the arc (v, v')):

» The coin operator spreads the walker’s position over the
arcs whose tails are v.

» The shift operator shift the walker to (V/, v).

Note: In the arc notation, the action of the coin is visible.

Locality — Formal definition in the arc notation

Definition
An operator A on the Hilbert space H 4 is local when
(at|Alaz) # 0 only if the pair of arcs a; and a, are adjacent.

Adjacent arcs: e <> e, <~ o5 el De s

Non-adjacent arcs: = e — o =5

Note 1: The shift S and the coin C are local operators.

Note 2: The evolution operator U is nonlocal in the arc notation.
U is local if S'is flip-flop.

Periodicity of QWSs on Finite Graphs

Definition
The quantum walk dynamic is periodic if there is a fundamental
period ty € Z1 and a real parameter a such that U = e?7io/,

It follows that |<1/)(0)\1/}(nt0)>]2 = 1 for all positive integer n and
for any choice of the initial state |(0)).

Theorem

The discrete-time quantum-walk dynamic on finite graphs with
evolution operator U is periodic if the arguments of the
eigenvalues of U are rational multiples of 2.

Periodicity is rare.

Periodicity in cycles and 2D cyclic lattices (Kendon et.al),
bipartite graphs (Kubota), some negative results (Saito)

Quasi-Periodicity of QWSs on Finite Graphs
Definition
The quantum walk dynamic is quasi-periodic if for any fixed
positive number e there is a time step t such that || U' — /|| <.

The norm of operator U is

[Ul[= max [{&|U]y)]
e

Theorem
Discrete-time quantum-walk dynamics on finite graphs are
quasi-periodic.

Lemma
Given a positive number ¢ and unit complex numbers e« for
1 <k<NandN € Z", there exists t € Z* such that

m/?x etk _ 1’ <e.

Limiting Probability Distribution

» The limit lim;— py(t) usually doesn’t exit.
» The average probability distribution is defined as

BUT) = = 3 puld).
t

» The limiting probability distribution is

w(v) = lim py(T).

Fact
» The limit exists for all graphs.
» Usually the limiting probability depends on the initial state

Limiting Probability Distribution

Example: limiting probability distribution of a coined QW as
function of the Hamming weight on the hypercube with N = 232

(1(0)) = 10)).

Wyl

T T
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
v

Quantum mixing time [1]

The quantum mixing time is
Te=min{T|Vt>T, ||f)v(t) — 7TVH <},
where

1 N
HP—qH=2;|pv—qu-

[1] D. Aharonov et al. Quantum Walks on Graphs. Proceedings of ACM-STOC'01,
50-59, 2001.

Example: Quantum mixing time on cycles

100 ‘ . , .
2
gL ET S 1 | 1
S I
©
+ I
o I
= |
210l |
kS [
T |
> |
© |
5 |
T 106] |
Te |
\I
. Lo L L
100 10! 10? 10% 10 108

number of steps

Blue curve: ||py(t) — 7| as a function of t (usually 1/t)

Black curve: ||py(t) — 7| as a function of number of steps t

Quantum and classical mixing time

Comparing quantum mixing time with classical:

’ Te H N-cycle ‘ 2D lattice ‘ Hypercube
Quantum | O (M) o (@) o) (@)
Classical | O(N2logl) | O(Nlogl) | O (|og N log IoggN)

QW on Graphs: Interesting Problems

» Determine the limiting probability distribution =, on graphs
» Analyze the mixing time and related times
» Find graphs with periodic evolution

It is also interesting (we have not discussed the details):

» Analyze the evolution of the standard deviation of p,(t) and
other statistics

» Find graphs with perfect state transfer and fractional revival
» Find graphs with instantaneous uniform mixing

» Find algorithmic applications: searching and other
problems

Final comments

v

We have formally defined coined QWs
The arc notation can be used for any multigraph
e The locations of the walker are the arcs
» Class-2 graphs may use the position-coin notation

e The locations of the walker are the vertices
e The coin space is an internal (hidden) space

It is easy to implement the coined model in Python

v

vy

We have defined:

Locality

Quasi-periodicity

Limiting probability distribution

Mixing time

» Tomorrow the focus will be on the staggered model

Thank you

Questions?

Questions can be sent by email to Portugal@Lncc.Br

