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Outline

» Review on graph coloring

» Coined quantum walks on graphs

> Staggered quantum walks on graphs
» Spatial search algorithm

» Equivalence of discrete-time QWs



Today’s Outline

Defining graph tessellation cover

Defining staggered quantum walks

Locality

Characterizing 2-tessellable quantum walks
Showing that Szegedy’s QWs are 2-tessellable QWs
k-tessellable quantum walks
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Staggered Quantum Walks on Graphs

Properties of the staggered model:

> |t is a discrete-time model.
» The spatial structure is a simple graph.
The locations of the walker are the vertices:

v

H=A{lv):ve V(G)}

v

The model does not have a coin (no inner space).
The model may employ more than two local operators.
Each local operator is an extension of the shift operator.
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Graph Tessellation Cover

Before defining graph tessellation cover, we need to review:

Partition into cliques:
A partition of the vertex set into cliques is a collection of disjoint
cligues so that the union of these cliques is the vertex set.

For example: Set 7; = {{0,1,2},{3,4},{5}} (red panel) is a

partition of the Hajés graph (Sierpinski Gasket Graph S,) into
cligues. 77 contains the vertex set but doesn’t contain the edge

set.
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Graph Tessellations
Definition
1. A graph tessellation T is a partition of the vertex set into
cliques.
2. An element of the tessellation is called a file.

3. An edge belongs to the tessellation 7 if and only if its
endpoints belong to the same tile.

4. The size of a tessellation 7 is the number of tiles in 7.

For example: Ty, T2, T3 are tessellations:
Ti = {{0,1,2},{3,4},{5}} red
T> = {{1,3,4},{2,5},{0}} green
Ts = {{2,4,5},{0,1},{3}} blue
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Graph Tessellation Cover

Definition

Given a graph G with edge set E(G), a graph tessellation
cover of size k is a set of k tessellations 7y, ..., Tx, whose union
covers the edges, that is,

Uk, E(T) = E(G).

Example: A tessellation cover of the Hajos graph is {71, 72, T3},
where

T = {{07 1 72}7 {37 4}7 {5}}7

T2 = {{1 ,3, 4}7 {27 5}7 {0}},

T3 = {{2,4,5},{0,1}, {3}}.

Note that E(77) U E(Tz) U E(T3) = E(G).



Graph Tessellation Cover

Definition

A graph G is called k-tessellable if there is a tessellation cover
of size at most k. The size of a smallest tessellation cover of G
is called tessellation cover number and is denoted by T(G).

Example:

We have provided a tessellation cover of size 3 for the Hajés
graph. Then, it is 3-tessellable. An exhaustive inspection shows
that it is not possible to find a tessellation cover of size 2 or 1.
Then, T(Hajos) = 3.



The Evolution Operator of the Staggered Model

e Let G(V, E) be a connected simple graph so that |V| = N and
let H ={|v) : v e V(G)}. Let {Ti, ..., Tx} be a tessellation
cover of G of size k.

e Suppose that 71 = {o; : 1 <j < p} (o) is atile and p is the
tessellation size). For each tile, define

o) = ——=>_10),
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where |oy] is the number of vertices in tile ;.

e Define the Hermitian and unitary operator associated with 74
as

o
Hi =23 Joj)(oj = I
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The Evolution Operator of the Staggered Model
Example: The tiles of tessellation 7; = {{0,1,2},{3,4},{5}} of
the Hajos graph are associated with the vectors

1

Ia1>=\@(|0>+|1>+|2>)
o2) = —=(13) +14)
lag) = [5)
and tessellation 77 is associated with the Hermitian operator
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The Evolution Operator of the Staggered Model

The evolution operator of the staggered model associated with
a tessellation cover {73, ..., Tk} is

_ i6kH 1604 H-
U = elfiHk gi0thh

where 0; are angles and H; is associated with tessellation 7;.

Since Hj? =1,

et = cos 0 1 +isin0; H;.
A staggered quantum walk based on a k-tessellable graph is
called k-tessellable quantum walk.



Summarizing the Definition of the SQW

1.

Given a graph G, find a tessellation cover {73, ..., T }.
The least k, the better.

Associated with Ti = {1, ...,ap}, define

H _22|04] (o) — I, where |aj) =

1),
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and so on for Ho, ..., Hg.

The evolution operator is
U = el%Hk gi01hh

The state of the walk after t steps is |4(t)) = U!|(0)),
where |(0)) is the initial state.

The probability of finding the walker on vertex v after t

steps is (1) = [(v]p()]?



Alternative Tessellation Covers

Example of an alternative tessellation covers of the Hajos
graph: 0 0

3 4 5 3 4 5

Ti ={{0,1,2}, {3}, {4}, {8}} T ={{1,2,4},{0},{3},{5}}
T2 ={{1,8,4},{0}, {2}, {5}} Tz ={{1,3,4},{0,2},{5}}
Ts ={{2,4,5}, {0}, {1},{3}} T3 ={{2,4,5},{0,1},{3}}

Note that

E(T)NE(T) =0 but  E(T)NE(T) = {14} E(T{) N E(Ts) = {24}

Those tessellations covers have different dynamics.



Locality in the Staggered Model

Definition
A linear operator H is local with respect to a graph G when
(va|H|v1) = 0if vertices v1 and vz (v # v2) are non-adjacent.

Notes:
» H; is local because

p
V2’H1‘V1 22 V2|Oz/ <Oé/‘V1 <V2|V1>:0.
j=1

If vertices v4 and v» are non-adjacent (a clique contains
either vq or vo).

» ¢%Mi s also local because el = cosfy | +isin 61 Hj.



More on Graph Tessellation Cover

> Recall that U = ek eif1H

» The number of local operators is the size of the tessellation
cover

» Which graphs are 2-tessellable?



Which graphs are 2-tessellable?

Lemma
Each maximal clique of a 2-tessellable graph G # Ky is inside
in exactly one tile.

Proof.

It is impossible to partition a maximal clique C into two smaller
cligues C5 and Cp, such that C = C;U Cp . Then, C must be
inside one tile of 75. If tessellation 77 covers C and G # Ky, the
tessellation 7> must cover a vertex that does not belong to C.
Then 7, does not cover C. Then C is in exactly one tile. O
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Which graphs are 2-tessellable?

Proposition
G is 2-tessellable if and only if its clique graph is 2-colorable.

Proof.

(“if” part) If the clique graph is 2-colorable, it induces a method
to color the maximal cliques of G with 2 colors.

(“only if” part’) If G is 2 tessellable, the previous lemma shows
that the clique graph is 2-colorable. O]

[1] R. Portugal. Staggered Quantum Walks on Graphs. Phys. Rev. A 93, 062335
(2016)

[2] M.C. Golumbic et.al. Edge-intersection graphs of boundary-generated paths in a
grid. Discrete Applied Mathematics, 236, 214-222 (2018) — See Theorem 3.1 (using
equivalence covering — Duchet)



Which graphs are 2-tessellable?
Answer: The set of graphs G whose clique graph is 2-colorable.

Alternative characterization:

Lemma

(Peterson) K(G) is bipartite if and only if G is the line graph of a
bipartite multigraph.

Proposition

G is 2-tessellable if and only if G is the line graph of a bipartite
multigraph.



Characterization of 2-tessellable QWs

Proposition

1. G is 2-tessellable without an edge in the tessellation
intersection iff G is the line graph of a bipartite simple graph iff
the tessellation cover is a 2-colorable Krausz partition.

2. Gis 2-tessellable with an edge in the tessellation
intersection iff G is a line graph of a bipartite multigraph.

Proof.

(Peterson) G is the line graph of a bipartite graph < G is diamond-free and K(G) is
bipartite

(Peterson) A graph is diamond-free < any two maximal cliques intersect in at most
one vertex < each edge lies in exactly one maximal clique

O

Note: Szegegy’s quantum walks are defined on bipartite graphs.
Cannot be extended in a natural way to bipartite multigraphs.
Question: Are Szegedy’s QWs instances of 2-tessellable SQWs?



2-tessellable graphs and Szegedy’s model [1]
Let G be a simple graph with transition matrix py .
Definition
Szegedy’s QW on a bipartite graph I'(X, Y, E) is defined on a
Hilbert space #!XI @ H!Y!, whose computational basis is
{Ix,y) : x € X,y € Y}. The evolution operator is

W = Ry Ry,
where

% |%,¥)
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[1] M. Szegedy, Quantum speed-up of Markov chain based algorithms, in Proc. of the
45th Symposium on FOCS, 2004.



Szegedy’s QWs C 2-tessellable QWs

Proposition

(=) [1] Any instance of Szegedy’s QW can be cast into the
Staggered model as a 2-tessellable QW with no edge in the
intersection of the tessellations.

Proposition

(<) [1,2] Any instance of a 2-tessellable QWSs on line graphs of
bipartite graphs with no edge in E(77) N E(7z) can be cast into
Szegedy’s QW model.

[1] Portugal et al. The staggered quantum walk model, Quantum Inf. Proc. 15, 85
(2016).
[2] R. Portugal. Staggered Quantum Walks on Graphs. Phys. Rev. A 93, 062335
(2016)



Example: 2-tessellable graphs and Szegedy’s model

Example of a graph that is a line graph of a bipartite graph:

Tessellation cover with no edges in the tessellation intersection

Tessellation cover with edges in the tessellation intersection

H [ L(H) ]



Staggered QWs ¢ Szegedy’s QWs

Proposition

Any staggered QW on G with a forbidden Beineke induced
subgraph cannot be cast into Szegedy’s QW model.

A4y <P

Proposition

1. Only I'p,..., g are 2-tessellable.
2. If G has induced subgraph 'y or I'7 or I'g or 'g then
T(G) > 8.




Staggered QWs ¢ Szegedy’s QWs

Let 7 = {claw, 4-wheel, 4-fan, odd cycles}.
Lemma

(Peterson) K(G) is bipartite if and only if G is F-free.

Proposition
G is 2-tessellable if and only if G is F-free.

Proposition
A staggered QW on G can be cast into Szegedy’s QW model if
and only if G diamond-free and claw-free and has no odd cycle.



What about k-tessellable graphs?

The graph tessellation problem:
Def.: G is k-tessellable if there is a tessellation cover of size k.
e The k-TESSELLABILITY problem: Is G is k-tessellable?

Def.: The tessellation cover number T(G) is the minimum k
such that G is k-tessellable.

e Problem: What is the minimum size T(G) of a tessellation
cover of G?

e Problem: Given k, is T(G) < k?

e Problem: What are the bounds for T(G)?



Results [1,2]

> 1< T(G) < min{X'(G), x(K(G))}

» If Gis a diamond-free graph with x(K(G)) = w(K(G)), then
T(G) = x(K(G))
If Gis a 3-tessellable diamond-free graph, then 3 < x(K(G)) < 4

N-TESSELLABILITY for any fixed n > 4 is N"P-complete

>

>

> 4-TESSELLABILITY of chordal (2, 1)-graphs is A"P-complete

> 3-TESSELLABILITY of planar graphs with A < 6 is A’P-complete
>

3-TESSELLABILITY of diamond-free graphs with diameter five is
NP-complete

> 2-TESSELLABILITY can be solved in linear time

[1] A. Abreu, L. Cunha, T. Fernandes, C. de Figueiredo, L. Kowada, F. Marquezino, D.
Posner, R. Portugal. The graph tessellation cover number: Chromatic bounds, efficient
algorithms and hardness. Theoretical Computer Science, Vol 801, (2020) 175-191.

[2] —. A computational complexity comparative study of graph tessellation problems.
Theoretical Computer Science, Vol 858, (2021) 81-89.



Final comments
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We have defined graph tessellation cover
We have defined the staggered quantum walk
The evolution operator is obtained from a tessellation cover

Szegedy’s model is included in the set of 2-tessellable
QWs

We have discussed k-tessellable quantum walks

Open problem: How to characterize the class of
3-tessellable graphs?

Graph theory is essential for quantum walk models
Tomorrow the focus will be on the spatial search



Thank you

Questions?



