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PETRÓPOLIS, RJ - BRASIL

SEPTEMBER 2018
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POST-QUANTUM CRYPTOGRAPHY: AN EFFICIENT

DIFFERENTIAL FAULT ANALYSIS ATTACK AND A NEW

ONE-TIME SIGNATURE SCHEME

Juan del Carmen Grados Vásquez

Outubro 2018

Advisor: Renato Portugal, D.Sc.

Cryptography is present in many fields in our daily life such as bank transac-

tions, e-commerce, military communications, among others. Cryptography scien-

tists have dedicated enormous effort to develop efficient and secure cryptographic

schemes. The most common and successful ones are based on problems of num-

ber theory, for example, RSA and elliptic-curve cryptography. However, in 1994

Peter Shor of Bell laboratories managed to develop a quantum algorithm that can

break RSA and other public-key cryptosystems based on number theory by using

quantum computers. Symmetric primitives are also threatened by the arrival of

quantum computers. Nonetheless, they are more resistant than the asymmetric

primitives. In fact, the best-known quantum algorithm for attacking symmetric

primitives is the Grover algorithm, which has a quadratic improvement over the

best classical algorithm. So, according to the literature, it is enough to double the

size of the keys to resist attacks of this algorithm. Efforts are concentrated in de-

veloping public and private key cryptographic schemes that resist the quantum at-

tacks. These schemes are usually classified as 1) hash-based schemes, 2) code-based

schemes, 3) lattice-based schemes, 4) multivariate-quadratic-equation schemes, and

5) secret-key schemes.

We study schemes of the classes 1), 2), and 5); and we divide the thesis into

vii



three parts. In the first part, we introduce coding theory and provide an overview

of code-based cryptography focusing mainly on the digital signature of Courtois,

Finiasz, and Sendrier. In the second part, we study one-time signature schemes

that resist quantum attacks. These schemes belong to the hash-based and code-

based classes. Our contribution in this part is a new code-based one-time signature

scheme. In the third part, we give an overview of differential fault analysis, and

we study one scheme proposed by NSA in 2013 — Simon. Our contribution in this

part is an efficient differential fault analysis on Simon.
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para a obtenção do grau de Doutor em Ciências (D.Sc.)

CRIPTOGRAFIA PÓS-QUÂNTICA: UMA ANÁLISE

DIFERENCIAL EFICIENTE E UM NOVO ESQUEMA DE

ASSINATURA DE USO ÚNICO

Juan del Carmen Grados Vásquez

Outubro 2018

Orientador: Renato Portugal, D.Sc.

A criptografia está presente em muitos campos da nossa vida cotidiana, como

transações bancárias, comércio eletrônico, comunicações militares, entre outros.

Pesquisadores em criptografia dedicaram um enorme esforço para desenvolver es-

quemas criptográficos eficientes e seguros. Os mais comuns e bem sucedidos são

baseados em problemas da teoria dos números, por exemplo, RSA e criptografia de

curvas eĺıpticas. No entanto, em 1994, Peter Shor, dos laboratórios Bell, conseguiu

desenvolver um algoritmo quântico que pode quebrar o RSA e outros sistemas

de chave pública baseados na teoria dos números, usando computadores quânti-

cos. Primitivas simétricas também estão ameaçadas pela chegada de computadores

quânticos. No entanto, elas são mais resistentes do que as primitivas assimétricas.

De fato, o algoritmo quântico mais conhecido para atacar primitivas simétricas é

o algoritmo de Grover, que possui um ganho quadrático. Então, segundo a liter-

atura, basta dobrar o tamanho das chaves para elas ficarem resistentes aos ataques

deste algoritmo. Esforços estão concentrados no desenvolvimento de esquemas crip-

tográficos de chave pública e privada que resistem aos ataques quânticos. Esses

esquemas são geralmente classificados como: 1) esquemas baseados em funções

hash, 2) esquemas baseados em códigos, 3) esquemas baseados em reticulados, 4)

esquemas baseados em equações quadráticas multivariadas e 5) esquemas de chave

ix



privada.

Estudamos esquemas das classes 1), 2) e 5); e nós dividimos a tese em três

partes. Na primeira parte, introduzimos a teoria de codificação e fornecemos uma

visão geral da criptografia baseada em códigos, focando principalmente na assi-

natura digital de Courtois, Finiasz e Sendrier. Na segunda parte, estudamos es-

quemas de assinatura de uso único que resistem aos ataques quânticos. Esses

esquemas pertencem às classes baseadas em funções hash e baseadas em códigos.

Nossa contribuição nesta parte é um novo esquema de assinatura única baseada em

códigos. Na terceira parte, damos uma visão geral da análise diferencial de falhas, e

estudamos um esquema proposto pela NSA em 2013 — Simon. Nossa contribuição

nesta parte é uma análise diferencial eficiente de falhas no Simon.
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Chapter 1

Introduction

Since very remote times, humans needed to hide information. One of the

first examples is found in ancient Greece. The Spartan ephors used a system

called Scythian (Holden, 2017), which consisted of two wooden poles of the same

thickness, and a parchment. One rod was for the sender and the other for the

receiver. To send some secret information, the sender had to wrap a parchment

in the wooden stick and to write a secret message on top of it. In this way, when

the parchment was released, the letters composing the message were transposed.

To decrypt the message, the receiver had to wrap the parchment in a stick of

the same thickness. This technique, that alters the order of the letters is known

as transposition. Another technique to hide information is substitution. In this

technique, the letters that make up the message are replaced by other letters of

the alphabet. For example, the Hebrews swapped the first letter of its alphabet

with the last; the second with the penultimate, and so on. Sophisticated variations

of the substitution technique were also used by Emperor Cesar, Vernam, among

others.

For many years, the mentioned techniques were used mainly in the military

area. For example, during World War I, Germany used encrypted telegrams to

urge Mexico to invade the United States. Nevertheless, Great Britain decrypted

the content of these telegrams and advised the United States of German inten-

tions (Kahn, 1996). According to history, this was one of the reasons why the
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United States decided to enter this World War I. Another example of the use of

substitution and transposition techniques is also found in World War II. Germany

used a machine, called Enigma, to encrypt its messages. Again, Great Britain

managed to decrypt the messages cryptographed by this machine contributing to

the end of the Second World War.

The techniques used to build encryption methods gave rise to a part we

now know as cryptography, and the techniques used to break the security of such

methods gave rise to what we now know as cryptanalysis. Until 1976, cryptography

methods used only one key to encrypt as much as to decrypt. For example, in the

system used by the Hebrews, the key was to know that the first letter of the

alphabet should be replaced by the last letter, the second by the penultimate, and

so on. Cryptography that uses the same key to encrypt and decrypt is known as

symmetric cryptography or private-key cryptography (depicted in Figure 1.2). One

problem with this type of cryptography is the exchange of keys. In fact, suppose

we want to send a secret message from Brazil to China. How do we send the key

to the receiver? With symmetric cryptography, we have no choice but to send it

through an insecure channel or meet personally to share our key. Thus, we pay a

high price for establishing secure communication with this type of cryptography.

In 1976, a theoretical work (Diffie and Hellman, 1976) managed to solve

the problem of key exchange, giving rise to asymmetric or public-key cryptogra-

phy (depicted in Figure 1.1). The first public-key cryptography system, which is

used to date, was proposed by Rivest, Shamir, and Adleman (Rivest, Shamir, and

Adleman, 1978). This system is call RSA. After RSA, other works proposed new

public-key or asymmetric cryptography schemes, for example, ElGamal (Elgamal,

1985). All these works are based on difficult problems of the number theory. For

instance, RSA is based on the practical difficulty of factoring a number that is

the product of two large prime numbers. In the work of Rivest et al., a system

to sign and verify digital documents was also presented (depicted in Figure 1.3).

This system is also based on the practical difficulty of the product factorization of

2



two large prime numbers.

Plaintext Ciphertext Plaintext Plaintext

Encrypt Decrypt
Insecure Channel

Private-key Private-key

Insecure Channel

A B

Figure 1.1: Private-key cryptography.

Plaintext Ciphertext Ciphertext   Plaintext

Encrypt Decrypt
Insecure channel

Public-key Private-key
Insecure channel

A B

Figure 1.2: Public-key cryptography.

Actually, RSA is one of the most deployed cryptosystems, and as other cryp-

tosystems, it is used to secure bank transactions, e-commerce, military communica-

tion among others. However, in 1997, Peter Shor, from Bell laboratories, developed

a quantum algorithm, which bears his name, that can be used to break RSA and

other public-key systems based on number theory (Shor, 1997). Shor’s algorithm

can factorize a number N in time O((logN)3) and space O(logN). Due to this

result, scientists in the area searched for cryptographic systems that resist these

types of attacks. Some forgotten cryptographic systems were considered again due

to their resistance against the quantum attacks, for instance, the McEliece cryp-

tographic scheme. Besides, new schemes that resist these attacks have appeared.

Symmetric primitives also suffer from a reduced security in the quantum

world, but this security reduction is much less drastic than for many asymmetric

primitives. So far, the main quantum attack on symmetric algorithms follows from

Grover’s algorithm (Grover, 1996) for searching an unsorted database of size N

in O(N1/2) time. It can be applied to any generic exhaustive key search, but

3



Plaintext

Encrypt Decrypt
Insecure channel

Private-key

or Signature-key

Hashing Hashing

PlaintextA B

Private-key

or Signature-key

Figure 1.3: Signature scheme.

merely offers a quadratic speed-up compared to a classical attack. Therefore, the

consensus is that key lengths should be doubled to restore the security.

The systems that are believed to be resistant against attacks from quantum

computers are known as post-quantum systems, and Bernstein, Buchmann, and

Dahmen (2008) classified them as follows:

• Hash-based cryptography;

• Code-based cryptography;

• Lattice-based cryptography;

• Multivariate-quadratic-equations cryptography;

• Secret-key cryptography.

Motivated in both the search for new cryptographic schemes that deal with post-

quantum attacks and in the search for cryptographic attacks against post-quantum

systems, we will focus on signatures schemes of the first two classes, and on a DFA

(Biham and Shamir, 1997) attack against the last class. Thus, we divide our thesis

into three parts.

In the first part, we introduce coding theory in Chapter 2, and give an

overview of code-based cryptography in Chapter 3, where we introduce the sig-

nature of Courtois, Finiasz, and Sendrier (CFS) (Courtois, Finiasz, and Sendrier,

2001). This scheme is a well-known alternative signature scheme based on the

hardness of decoding random linear codes. We did a review of that scheme. The

4



the best of our knowledge, it was the first practical digital signature scheme based

on codes and thus one of the most studied post-quantum schemes, and not only

that, this system helped us to understand how to build a digital signature system

based on codes.

In the second part, we give an overview of hash-based cryptography, in

Chapter 4, and we present the main schemes in this area such as the Merkle

scheme (Merkle, 1990) and W-OTS+ (Hülsing, 2013b). In Chapter 5, we present

two code-based signature schemes — KKS (Kabatianskii, Krouk, and Smeets,

1997) and BMS-OTS (Barreto, Misoczki, and Simplicio Jr., 2011). These are

one-time schemes, resistant to quantum attacks, and based on the hardness of

decoding random linear codes. An advantage of these proposals is that they use

generic codes for which no efficient decoder is known, rather the ones that have

trapdoors. In addition, BMS-OTS has a security proof in the random oracle model.

Thus, a drawback of one-time signatures schemes based on codes is the lack of a

security proof in the standard model. Another drawback of KKS and BMS-OTS

is their large verification-key sizes. In fact, KKS and BMS-OTS use two matrices

as verification key, these two matrices are large when instantiated with random

matrices. Thus, we introduce a new one-time signature scheme based on codes.

This proposal is hash-free and, when instantiated with random matrices, it has

smallest verification key. Also, since it is hash-free, a proof in the standard model

could be done.

In the third part, we give an overview of the differential fault analysis (DFA).

This part is divided into two chapters. In Chapter 6, we present fundamentals of

fault attacks and the fault attack procedure. In Chapter 7, we present the Si-

mon family cipher (Beaulieu, Shors, Smith, Treatman-Clark, Weeks, and Wingers,

2013). This family of lightweight block ciphers was proposed by NSA in 2013

and has been optimized for performance in hardware implementations. The Simon

family uses the Feistel structure, which consists of various identical rounds. There

are several DFA attacks against the Simon family, which use a bit, a byte, or a

5



random model. All these models, that appeared until before the publication of our

attack, use several rounds to perform their attacks. Due that, we introduce an ef-

ficient one-bit model for differential fault analysis against Simon (Grados, Borges,

Portugal, and Lara, 2015), which use half of rounds in comparison with those at-

tacks that appeared until before the publication of our attack. In particular, with a

single round, we get the entire key of two members of the Simon family. This work

was presented in FDTC, Fault Diagnosis and Tolerance in Cryptography, which is

one of the most recognized workshops in the area.
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Part I

Code-based Schemes

7



Chapter 2

Preliminaries on Coding Theory

In this chapter, we will give an overview of the principal definitions and

theorems that we will need in the thesis, for more information please refer to Lint

(1998) and MacWilliams and Sloane (1977).

Shannon (1948) established the basis of the coding and information theory

in his work “A Mathematical Theory of Communication”. Initially, Shannon stud-

ied how to encode messages before transmitting them on a noisy communication

channel. Coding theory has been developed throughout the years, and now it in-

corporates the study of codes, including error-detecting and error-correcting codes.

Several areas use coding theory, for example, data compression, cryptography, error

correction, and networking. The following example is classic in the error-correcting

area, and it will help to understand concepts about codes that will appear later.

In 1971, the spacecraft Mariner 71 traveled to Mars to send data and pictures

to Earth. The pictures were transmitted using a fine grid. In each square was

quantified the blackness degree of the image with a number between 0 and 63.

A binary string of length 6 represented these numbers. The bits 0 and 1 were

represented and transmitted as two different signals to a receiver station on Earth.

However, sometimes, the signals arrived weak due to big distances causing bit-flip

errors.

The spacecraft Mariner 71 used the Reed Solomon code. This code, as oth-

ers error-correcting codes, incorporates some redundancy, so that, if some of the
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symbols in a transmitted message were changed, we could still figure out the sent

message. The Reed Solomon code encodes its messages in bit strings consisted of

k bits of the original data and t bits with redundancy data. The Reed Solomon

code used in Mariner 71 was the (6, 4) code. In that code, length of the codeword

is n = 6 bits where k = 4 bits are original data and t = 2 bits are redundancy

data. This code can detect up to 2 errors.

2.1 Linear Codes

Linear codes are the cornerstone for almost all code-based cryptosystems.

Traditionally linear codes are partitioned into two cases: block codes and convolu-

tional codes. All cryptosystems described in this thesis use block codes. This kind

of codes encodes the data to be transmitted into blocks of equal size. Also, each

one of such blocks can be coded and decoded independently. The blocks resulted

of the codification are called codewords, and we call error-correcting code the set of

all these codewords. The messages are coded using an alphabet, and generally, is

assumed to be a finite field. In this chapter, we use the Galois Field F2 as alphabet

and the vectors would always be represented as line vectors and that the matri-

ces would always be multiplied to the right. The following paragraphs describe a

formal definition of linear codes.

Definition 2.1 (38, Misoczki (2010)). Let F2 a finite field with two elements. A

linear subspace with dimension k, of the vector space F
n
2 , is a binary linear code

[n, k]− C with length n and dimension k.

The code used in the spacecraft Mariner 71 mentioned earlier can correct

up to 2 errors because it recognizes whether at most 2 bits were changed from

the right codeword. The number of bits that were changed leads to the following

definition.

Definition 2.2 (33, Lint (1998)). If x ∈ F
n
2 and y ∈ F

n
2 , then the distance d(x, y)

9



of x and y is defined by

d(x, y) := |{i | 1 ≤ i ≤ n, xi 6= yi}|,

and the weight of x w(x) is defined by

w(x) := d(x, 0).

The distance defined above is also called Hamming distance. Notice that

the Hamming distance measures the required number of substitutions to change a

codeword into another. Also, Fn
2 is a metric space because d satisfies the properties

of a typical distance.

Definition 2.3 (1, Sudan (2001)). For any vector x ∈ F
n
2 ,

B(x, e) = (y ∈ F
n
2 |d(x, y) ≤ e) .

Definition 2.4 (34, Lint (1998)). The minimum distance of a code C is defined

by

min {d(x, y)|x ∈ C, y ∈ C, x 6= y} .

For a linear code the minimum distance is the minimal weight of a non-zero code-

word. In other words, the minimum distance of a linear code C is

d = min {w(x)|x ∈ C, x 6= 0}

Later, we will see that the minimum distance of a code is important because

it determines the ability to detect, or correct, wrong codewords.

Hereafter, we shall use [n, k, d] − C as notation for a k-dimensional linear

code C of length n and minimum distance d.

In linear codes, the process of encoding and decoding is made using linear

maps, which can be represented using matrices. The linear map for the encoding
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process is known as generator matrix. The linear map for the decoded process is

known as parity check matrix.

Definition 2.5 (35, Lint (1998)). A generator matrix G for a linear code C is a

matrix with dimensions k × n where its rows are a basis of C.

A generator matrix G is in standard form (or reduced echelon form) if G =

(Ik|P ), where Ik is the identity matrix with dimensions k × k. If G is in standard

form, then the first k symbols are called information symbols and the remaining

parity-check symbols.

Now, we are going to see how to obtain a parity check matrix from a generator

matrix, but before, we need the following definitions.

Definition 2.6 (4, Lint (1998)). Given a := (a1, a2, · · · , an) and b := (b1, b2, · · · , bn).

The inner product 〈x, y〉 is defined by

〈x, y〉 := a1b1 + a2b2 + · · ·+ anbn.

Definition 2.7 (36, Lint (1998)). If C is a [n, k] code, we define the dual code C⊥

by

C⊥ := {y ∈ F
n
2 |∀x∈C [〈x, y〉 = 0]} .

The dual code C⊥ is clearly a linear code, namely [n, n− k] − C⊥. If G =

(Ik|P ) is a generator matrix in standard form of the code C, then H = (−P T | In−k)

is a generator matrix for C⊥. This follows from the fact that GHT = 0 implies that

every codeword aG has inner product 0 with every row of H, i.e.,

x ∈ C ⇐⇒ xHT = 0.

The matrix H is called the parity check matrix of C.

Definition 2.8 (36, Lint (1998)). If C is a linear code with parity check matrix H,

then for every x ∈ F
n
2 we call xHT the syndrome of x.
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The set of all codewords with the same syndrome is called coset. More

formally

Definition 2.9. Let s ∈ F
R
2 . We denote the set of words in F

n
2 with syndrome s

by

S−1
H

(s) = {y ∈ F
N
2 |yHT = s}.

By definition, we have S−1
H (0) = C for any parity check matrix H of C. The

sets y + C, for all y in {0, 1}n, are called the cosets of C. There are exactly 2n−k

different cosets which form a partition of {0, 1}n.

If two words x and y are in the same coset, there exists two codewords c1

and c2 such that x = a+c1 and y = a+c2. We have then that HxT = H(a+c1)
T =

HaT = H(a + c2)
T = HyT so the two words have the same syndrome. On the

other hand if two words x and y have the same syndrome, then HxT = HyT and

H(x− y)T = 0. This is the case only if x− y is a codeword and therefore x and y

are in the same coset. Therefore, we have the following lemma.

Lemma 2.1 (17, MacWilliams and Sloane (1977)). Two words are in the same

coset if and only if they have the same syndrome.

Theorem 2.1 (67, Klima, Sigmon, and Stitzinger (2000)). Let C be a linear code

with parity matrix H and s the minimum number of linearly dependent columns in

H, then s is the minimum distance of the code.

Theorem 2.2 (11, MacWilliams and Sloane (1977)). A binary linear code with

minimum distance d can correct
⌊d− 1

2

⌋

errors.

In linear codes, the proportion of useful data (non-redundant data) R is given

by the following definition

Definition 2.10 (34, Lint (1998)). The rate of C is defined by

R := k/n
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For example, in the (6,4) Reed-Solomon code used by Mariner 71 quoted at

the beginning of this chapter the rate is 4/6.

In code-based cryptosystems, the next theorem is important because helps

to select codes that guarantee the hardness of these cryptosystems against certain

types of attacks.

Theorem 2.3 (43, MacWilliams and Sloane (1977)). A binary linear code [n, k, d]−

C is ensured to exist if
d−2∑

j=0

(
n− 1

j

)

< 2n−k.

The last expression is called the Gilbert-Varshamov (GV) bound. Random

binary codes are known to meet the GV bound in the sense that the above inequal-

ity comes very close to be equality (MacWilliams and Sloane (1977)). No family of

binary codes is known that can be decoded in subexponential time up to the GV

bound, nor is any subexponential algorithm known that can decode general codes

up to the GV bound.

Another significant bound in coding theory is the Singleton bound.

Definition 2.11 (33, MacWilliams and Sloane (1977)). If C is [n, k, d] code, then

d ≤ n− k + 1.

2.2 Compact Representation Theory

To reduce both key and signature sizes several algorithms of code-based

schemes use ranking functions, which have codewords as domain and integers as

image. These functions are also called ranks. The rank of a particular codeword

of length n and Hamming weight k is the number of codewords that precede it in

the sort listing of all possible codewords of length n and Hamming weight k.

Dennis Stanton (1986) propose a ranking function widely used in code-based

cryptography. The domain of this function is a set of bit-strings representing

codewords in colex order. Recall that two k-subsets A and B of a set with strict

linear ordering < are said to be in co-lexicographical order (colex order) if, for the
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sequences a and b of their elements sorted in ascending order, there exists index i

such that ai < bi and (∀j)j > i⇒ aj = bj.

The following definition formalizes the map presented in (Dennis Stanton,

1986).

Definition 2.12 (10, Dennis Stanton (1986)). Let B be a set of bit-strings of

length n. Let σ an arbitrary element of a subset C of B such that the length of the

bit-strings of C is k. Let σi, 0 ≤ i ≤ k− 1, be the position where σ has an element

different of zero. The ranking function

r(σ1σ2 · · · σk) =
k∑

i=1

(
σi − 1

i

)

assigns an unique number 0 ≤ a ≤
(
n
k

)
to any k-element of the subset C.

2.3 Decoding

Let c = y + e ∈ F
n
2 be the codeword that arrives to a receiver, where y was

coded using a code [n, k, d] − C and e is an error vector with number of ones less

or equal than
⌊d− 1

2

⌋

. If we want to decode c one could use the follow Syndrome

Decoding method.

1. Calculate and save in a table the syndrome of each possible error vector

with Hamming weight less or equal than
⌊d− 1

2

⌋

,

2. Calculate the syndrome of the received message. Notice, that this message

has the same syndrome as the error vector added into codeword,

3. Identify the error vector using the table calculated in step 1,

4. Sum the identified error vector in the last step to the received codeword.

As we shall see later, we need to calculate 2n−k syndromes in step 1 to con-

struct the cited table, that is, the complexity of the above method is exponential.

There are other types of codes, which have trapdoors that allow “efficient decodifi-

cation”, for instance the Goppa code used in the McEliece cryptosystem explained
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in Section 2.4.5. Those that do not have an algebraic structure to allow an“efficient

decodification” are known as General Linear Codes.

Decode General Linear Codes can be stated in the following problem.

Problem 2.1 (Syndrome Decoding – SDP(N, R, n, s)). Given a binary matrix

HR×N , a word s in F
R
2 , and a positive integer n, find the word e in S−1

H (s) with

Hamming weight wt(e) ≤ n.

Berlekamp, McEliece, and van Tilborg (1978) showed that the associated

decision problem is NP-complete.

Decode General Linear Codes is one of the most active areas of postquantum

research. Most algorithms with best performance to solve SDP are variations of

the Information Set Decoding (ISD) algorithm (Prange, 1962). Let C a [N,K]-

code. An information set is a set of K positions among the N positions of the

support. Also, let SDP(N, R, n, H, s) an instance of the SD problem. The ISD

algorithm consists in reducing the search space of solutions. The first step consists

in transform the original problem in another equivalent by randomly permuting the

columns of H using a permutation matrix P . Let H′ = HP the result of this permu-

tation. The next step is to transform H′ into a systematic form matrix (IN−K |Q)

where Q ∈ F
(N−K)×K
2 and IN−K is the (N −K)-dimensional identity matrix. Next,

one calculates all linear combinations with n vectors. If the sum of at least one of

these linear combinations with s is 0, then the last K columns of the matrix forms

an information set and then we found a solution for SDP(N, R, n, H, s).

2.4 Special Codes

In this section, we define some of the codes that we will use in the following chapter.

2.4.1 Equidistant Codes

Definition 2.13 (27,Kaski and Österg̊ard (2005)). A code is called constant weight

if all codewords have the same weight.
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Definition 2.14 (29,Kaski and Österg̊ard (2005)). A code is called equidistant if

the distance between any two distinct codewords is equal to a given parameter d.

Notice, that in virtue of Definition 2.4 equidistant codes are equivalent to

constant weight codes.

2.4.2 BCH Codes

The Bose–Chaudhuri–Hocquenghem codes (BCH) form a class of cyclic error-

correcting codes that are constructed using polynomials over a finite field. BCH

codes were invented in 1959 by French mathematician Alexis Hocquenghem, and

independently in 1960 by Raj Bose and D. K. Ray-Chaudhuri.

Definition 2.15 (MacWilliams and Sloane (1997)). A cyclic code of length n over

Fq with generator polynomial g(x) is a BCH code of designed distance δ if, for

some integer b ≥ 0, g(x) is the monic polynomial of lowest degree over Fq having

αb, αb+1, · · · , αb+δ−2 as zeros.

Its parity check matrix is

H =












1 αb α2b ... αb(n−1)

1 αb+1 α2(b+1) ... α(n−1)(b+1)

...
...

...
. . .

...

1 αb+δ−2 α2(b+δ−2) . . . α(n−1)(b+δ−2)












.

The next lemma is a known bound on the weight of the codewords that

belong to binary BCH codes. As we shall see in Section 5.1, this bound was used

by a signature scheme to implement signatures with practicable sizes.

Lemma 2.2 (Carlitz-Uchiyama Bound). Let C be the dual of a binary BCH code

of length n = 2m− 1 and designated distance δ = 2s+ 1. Then for any x ∈ C:

∣
∣
∣wt(x)− n+ 1

2

∣
∣
∣ ≤ (s− 1)

√
n+ 1. (2.1)
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2.4.3 GRS Codes

Reed-Solomon codes were introduced in 1960 by I. Reed and G. Solomon. In

this section, we will define the generalization of these.

Definition 2.16. Let F = Fq be a finite field, where q ∈ N is a prime number.

Given v1, ..., vn ∈ F non-zero elements and α1, ...αn ∈ F . Let v = (v1, ..., vn) and

α = (α1, ..., αn). For 0 ≤ k ≤ n, Generalized Reed Solomon Codes are defined as:

GRSn,k(α,v) = {(v1f(α1), v2f(α2), ..., vnf(αn))|f(X) ∈ F [X]k}

with minimum distance k + 1.

In the previous definition, F [X]k represents the set of polynomials in the

ring F [X], of degree less than k. It is easy to see that this set is a vector space of

dimension k over F

2.4.4 Alternant Codes

Alternant codes are defined by making a constraint in the GRS codes. The

idea of this restriction is to select the portion of the GRS code that is also in a

subfield of the original field. This restriction is known as subfield subcode.

Definition 2.17. Let Fqm be a finite field extension of Fq. Given C ⊆ (Fqm)
n a

code over Fqm.

C|Fq
:= C ∩ F

n
q

is called of subcode subfield of C.

Definition 2.18. Let Fq be a subfield of Fqm, then the alternant code of GRSn,k(α, v)

in the subfield Fq is GRSn,k(α,v) ∩ Fq.

2.4.5 Goppa Codes

Among the alternant codes, as presented in MacWilliams and Sloane (1997),

there is a subclass of asymptotically good codes, in the sense that they reach the
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GV bound. These codes are interesting too because it is easy to calculate their

minimum distance. The creation of these codes is motivated by the BCH codes and

can be described as a function of a generator polynomial g(X), called the Goppa

polynomial, and a set of elements, L, which is contained in a finite field where the

Goppa code has its symbols (see section 10.5 Hefez and Villela, 2008).

Definition 2.19. Let F be a finite field, extension of a finite field K. Given

g(X) ∈ F [X] and L = {α0, α1, ..., αn−1} ⊂ F , where αi are two by two distinct and

such that g(αi) 6= 0 for i = 0, ..., n− 1. It is defined as Goppa code the set

ΓK(L, g) =

{

(c0, ..., cn−1) ∈ Kn;
n−1∑

i=0

cig(αi)
−1 = 0

}

.

It can be easily shown that the above set is a linear code, and it is said:

classic Goppa code over K associated to the set L and the polynomial g(X).

2.4.5.1 Parity Check Matrix

Below, we will present one of the ways for constructing of the parity check

matrix for the Goppa codes.

Let

g(X) =
δ∑

j=0

gjX
j, with gδ 6= 0 ∈ F,

then

g(X)− g(α)

X − α
=

δ∑

j=0

gj ·
Xj − αj

X − α
.

Therefore, (c0, c1, ...cn−1) ∈ ΓK(L, g) if and only if

n−1∑

i=0

(g(αi)
−1

δ∑

j=t+1

gjα
j−1−t
i )ci = 0, 0 ≤ t ≤ δ − 1.
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From the above expression we have c ∈ ΓK(L, g)⇐⇒ Bct = 0, where:

B =












g(α0)
−1gδ . . . g(αn−1)

−1gδ

g(α0)
−1(gδ−1 + gδ · α0) . . . g(αn−1)

−1(gδ−1 + gδ · αn−1)

... . . .
...

g(α0)
−1

∑δ
j=1 gjα

j−1
0 . . . g(αn−1)

−1
∑δ

j=1 gjα
j−1
n−1












and

cT =












c0

c1
...

cδ−1












.

Doing lj ←− lj − (gδ
∑j−1

i=1 gδ−iα
j−i−1
0 )l1 for 1 ≤ j ≤ δ − 1, where lj are rows

of B, we obtain the following matrix

Ĥ =












g(α0)
−1 . . . g(αn−1)

−1

g(α0)
−1α0 . . . g(αn−1)

−1αn−1

... . . .
...

g(α0)
−1αδ−1

0 . . . g(αn−1)
−1αδ−1

n−1












.

Therefore c ∈ ΓK(L, g) ⇐⇒ Ĥct = 0. Notice that the entries of this parity

check matrix Ĥ are in the field F . One can consider F as a K - vector space of

dimension m. Thus we can write each input of the matrix Ĥ as a vector of length

m with coordinates in K, obtaining a matrix H′ of dimensions (m × δ) × n with

coefficients in K. Therefore, c ∈ ΓK(L, g)⇐⇒ H′ct = a.

The minimum distance d of this code is at least δ. To demonstrate this, we

can see that by creating the matrix Ĥ
′
from any δ − 1 columns of Ĥ, we have:
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det(Ĥ
′
) =

δ−1∏

i=0

g(αi)
−1 · det

(












1 . . . 1

α0 . . . αδ−1

... . . .
...

αδ−1
0 . . . αδ−1

δ−1












)

.

The right-hand matrix of the above expression is the Vandermonde matrix, in

which we have det(Ĥ) 6= 0. Thus, any δ− 1 columns of Ĥ are linearly independent.

This result and the Theorem 2.1 demonstrate that the minimum distance of this

Goppa code is at least δ.

The matrix B can also be described as the product of three matrices: Toepliz,

T, Vandermonde, V and a diagonal matrix D, (Section 2.4.2.1 Hoffmann, 2011).

Like this,

B = T · V · D,

where

T =
















gδ 0 0 . . . 0

gδ−1 gδ 0 . . . 0

gδ−2 gδ−1 gδ . . . 0

...
...

...
. . .

...

g1 g2 g3 . . . gδ
















, V =
















1 1 . . . 1

α1 α2 . . . αn

α2
1 α2

2 . . . α2
n

...
...

. . .
...

αδ−1
1 αδ−1

2 . . . αδ−1
n−1
















D =












1/g(α0) 0 . . . 0

0 1/g(α1) . . . 0

...
...

. . .
...

0 0 . . . 1/g(αn−1)












.
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2.4.5.2 Generator Matrix

As explained in Section 2.1, the generator matrix G of the code, can be

calculated from H, computing a basis for the null space of the linear transformation

induced by the matrix H.

For a better understanding of the construction of the G and H matrices, let’s

see an example of its construction.

Example. We begin by constructing an extension F = F23 of a finite field

K = F2, with the residual class ring K[X]P (X), where P (X) = X3 + X + 1 is

an irreducible polynomial. Let g(X) = X2 + X + 1 Goppa’s polynomial, so the

minimum distance d is δ = deg (g(X))= 2. Let a be a primitive element of F and

L = F \ {0} be the support of code. We obtain:

T =






1 0

1 1




 ,

V =






1 1 1 1 1 1 1

1 a a2 a+ 1 a2 + a a2 + a+ 1 a2 + 1




 ,

D =






















1 0 0 0 0 0 0

0 a2 0 0 0 0 0

0 0 a2 + a 0 0 0 0

0 0 0 a2 0 0 0

0 0 0 0 a 0 0

0 0 0 0 0 a 0

0 0 0 0 0 0 a2 + a






















and, thus,

B =






1 a2 a2 + a a2 a a a2 + a

0 a2 + a+ 1 a+ 1 a+ 1 a2 + 1 a2 + a+ 1 a2 + 1




 .

Expressing each entry of B as a vector of dimension 3, we get:
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H′ =



















0 1 1 1 0 0 1

0 0 1 0 1 1 1

1 0 0 0 0 0 0

0 1 0 0 1 1 1

0 1 1 1 0 1 0

0 1 1 1 1 1 1



















.

Following the procedure of Example 3.5 as given in Klima et al. (2000), we

obtain the generating matrix:

G =

(

0 1 1 1 1 1 1

)

.

2.4.6 Binary Goppa Codes

We will now consider a special class of Goppa codes, called binary Goppa

codes, because the characteristic of the field, where the code has its symbols, is

two.

Definition 2.20. The constraints K = F2 and F = F2m in Definition 2.19, gen-

erates binary Goppa codes.

Proposition 2.1. (Hoffmann (2011)) If Γ(L, g) is a binary Goppa code, such that

g(X) is square free, then:

Γ(L, g) = Γ(L, g2).

Note that the above property causes the minimum code distance to be at

least 2 · δ, that is to say the correction of δ errors is ensured.
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Chapter 3

Courtois, Finiasz and Sendrier (CFS)

Signature Scheme

In this chapter, we introduce the CFS scheme (Courtois, Finiasz, and Sendrier,

2001) after reviewing two relevant public key cryptosystems based on error-correcting

codes, which are the basis for the CFS scheme. These two cryptosystems are the

McEliece (McEliece, 1978) and the Niederreiter schemes (Niederreiter, 1986).

3.1 The McEliece Scheme

This public scheme, which uses error-correcting codes, was invented by McEliece

(1978). McEliece used the binary Goppa codes (reviewed in Section 2.4.5). One of

the most important property of this scheme is its performance for both encryption

and decryption in comparison with another well-known schemes, for example RSA.

The main disadvantage is that the sizes of its keys are larger in comparison with

the ones used RSA. This fact has motivated scientists in this area to study how

to reduce these keys, for example Misoczki and Barreto (2009); Berger, Cayrel,

Gaborit, and Otmani (2009); Barbier and Barreto (2011).

The McEliece scheme is based on the difficulty of solving the syndrome de-

coding problem, which is NP-complete problem.

Next, we describe the algorithms of this scheme.
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3.1.1 Key generation

The following algorithms are described using the fictional characters Alice

and Bob. Here we are assuming that Bob wants to send a secret message to Alice.

1. Alice selects a binary Goppa code Γ with parameters (n, k) such that it

can be correct up to δ errors;

2. Alice computes the generator matrix Gk×n of the code Γ;

3. Alice selects a random non-singular matrix Sk×k;

4. Alice selects a permutation matrix Pn×n;

5. Alice computes a matrix Ĝ = S · G · P;

6. The public key of Alice is (Ĝ, δ) and its private key is the triple (S,G,P).

3.1.2 Encryption

Assume Bob wants to send a message x to Alice whose public key is (Ĝ, δ):

1. Bob computes c′ = xĜ;

2. Bob selects a random vector e ∈ F
n
2 and such that wt(e) = δ;

3. Bob computes the ciphertext as c = c′ + e.

3.1.3 Decryption

At this point, Alice with its private key and the ciphertext c performs the

next steps

1. Alice computes the inverse of P, i.e. P−1;

2. Alice computes ĉ = cP−1;

3. Alice using an efficient decoding algorithm for the code Γ decodes ĉ in x̂;

4. Alice computes x = x̂S−1.
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We can see that the encryption and decryption processes are consistent because of

the step (2) of Decryption, ĉ = cP−1 = (c′ + e)P−1 = xĜP−1 + eP−1 = xS · G · P ·

P−1 + eP−1 = xS · G+ eP−1. Notice that wt(eP−1) = δ because P is a matrix that

permutes the entries of e. In the last expression, applying a decoding algorithm

for the code Γ, ĉ is decoded in x̂ = xS. Multiplying both sides of the last by S−1,

we obtain x̂S−1 = x.

3.2 Niederreiter scheme

Niederreiter (1986) proposed a modification to McEliece scheme, which has

an equivalent security (Ding, Wolf, and Yang (2007)). This scheme has a smaller

private key in comparison with the McEliece scheme. However, both the encryption

algorithm and the decryption algorithm are expensive.

Next, we describe the algorithms of this scheme.

3.2.1 Key generation

1. Alice selects a binary Goppa code Γ with parameters (n, k) and such that

it can be correct up to δ errors;

2. Alice computes the parity check matrix Hk×n of Γ;

3. Alice selects a random non-singular matrix Sk×k;

4. Alice selects a permutation matrix Pn×n;

5. Alice computes the matrix Ĥ = S · H · P;

6. The public key of Alice is (Ĥ, δ) and its private key is (S,H,P).

3.2.2 Encryption

Assume Bob wants to send a message x to Alice whose public key is (Ĥ, δ):
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1. Bob encodes the message x as binary vector of length n such that wt(x) =

δ;

2. Bob computes the vector c = ĤxT .

3.2.3 Decryption

1. Alice computes the inverse of S,i.e. S−1;

2. Alice computes S−1c = HPxT ;

3. Alice uses an efficient decoding algorithm to retrieve PxT ;

4. Alice computes the original message x with xT = P−1PxT .

3.3 CFS Signature

In the 90’s, there were attempts to construct signatures schemes using asym-

metric cryptography based on codes (Stern (1993, 1994)). The algorithms used

in this scheme need a decodable syndrome. Which is a problem in their perfor-

mance. Courtois et al. (2001) proposed a practical scheme based on codes inspired

on the Niederreiter scheme. The signature scheme called CFS solves the above

problem allowing to correct an additional number of errors λ. Thus, to decode

a syndrome corresponding to a vector with de Hamming weight δ + λ, λ random

columns are added to the parity check matrix H, and the process of decoding is

performed again with the new syndrome. If the decoding process has success, then

the decoded vector is used in the signature generation. Otherwise, new columns are

generated randomly. This process is repeated until finding a decodable syndrome.

3.3.1 Key Generation

1. Choose a Goppa code Γ(L, g(X));

2. Compute both the generator matrix Gk×n and the parity check matrix

H(n−k)×n of Γ;
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3. Select a random non-singular matrix Sk×k;

4. Select a permutation matrix Pn×n;

5. Compute V = SHP;

6. The private key consists of G,P and S. The public key is (V, δ).

3.3.2 Signature Generation

1. Find the least i ∈ N such that c = h(m, i) and s = S−1c be a decodable

syndrome of the code Γ;

2. Compute the error vector e from s using an efficient decoding algorithm

of Γ;

3. Compute eT = P−1e′T ;

4. The signature is the pair (e, i).

3.3.3 Signature Verification

1. Compute c = VeT ;

2. Verify if c = h(m, i).

In the worst case, the signature is obtained using t! steps.

As we said before, all this review we have done will serve to understand part

II of this thesis.
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Part II

One-Time Signature Schemes
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Chapter 4

Hash-Based Cryptography

We have considered hash-based schemes because studying them, we found

an inspiration to create a new one-time signature based on codes.

4.1 Hash-Based One-time Signature Schemes

One-time signatures appeared more than three decades ago and as the name

indicates each key-pair of these schemes can only be used to sign a single message.

However, as we will see, if combined with Merkle tree, it can be used to sign many

messages with a single key, making those more efficient digital signature schemes.

The first one-time signature scheme based on hash and one-way functions

that appeared in the literature is the scheme of Lamport (1979). Another old but

important one-time signature is the Winternitz scheme (W-OTS). W-OTS was

presented in Merkle (1990) and appeared to improve both the signature and key

sizes of the Lamport scheme. In the same way as the Lamport scheme, W-OTS

can be built from hash and one-way functions.

W-OTS is the inspiration for new one-time signature schemes because it is

simple and has smaller signature and key sizes. Several variations of W-OTS with

significant improvements in both the security and performance are described in the

literature. Regarding the security, Hevia and Micciancio presented a proof in the

standard model for several graph-based one-time signatures, including W-OTS.

Regard performance, Buchmann, Dahmen, Ereth, Hülsing, and Rückert improve
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the signature and key sizes of W-OTS. Besides, this work shows two proofs in

the standard model when W-OTS is instantiated using pseudorandom functions

(PRF). The first one is the existential unforgeability of W-OTS using PFR, and

the second one is the strong unforgeability of W-OTS using second key resistant

functions. However, the reduction proofs presented in Buchmann et al. (2011)

have flaws according to Lafrance and Menezes (2017). Another improvement in

W-OTS, called W-OTS+, is described by Hülsing (2013b), who achieves smaller

key and signature sizes than the variation presented in Buchmann et al. (2011).

The work of Lafrance and Menezes (2017) does not affect W-OTS+.

In this section, we review the Lamport scheme, W-OTS, and W-OTS+.

4.1.1 Lamport Signature

Lamport (1979) created the first one-time signature scheme studied within

hash-based digital signatures. This scheme uses a one-way function and a hash

function as primitives. Despite huge key sizes, it supports attacks that could come

from quantum computers.

4.1.1.1 Lamport Parameters

Let n be the block size in the Lamport scheme and its security parameter.

Given h and g two cryptographic primitives where h : {0, 1}n 7→ {0, 1}n is a one-

way function and g : {0, 1}∗ 7→ {0, 1}n is a cryptographic hash function, then the

key generation, signature generation and signature verification are as follows.

4.1.1.2 Key-Generation

The signature key consists of 2n bit-strings Xi, 0 ≤ i ≤ 2n − 1, of size n.

The verification key consists of 2n bit-strings Yi, 0 ≤ i ≤ 2n − 1, of size n, such

that Yi = h(Xi).
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4.1.1.3 Signature Generation

The signature σ of a message m is calculated with the next steps:

1. Compute the digest of m, i.e. d = g(m);

2. Compute σj = X2j+dj , 0 ≤ j ≤ n− 1. Thus, σ = (σ0, σ2, · · · , σn−1).

4.1.1.4 Signature Verification

To verify the signature σ = (σ0, σ2, · · · , σn−1) of a message m under the

verification key Y , one must perform the next steps:

1. Compute the digest of m, i.e. d = g(m);

2. Accept if and only if h(σj) = Yj, 0 ≤ j ≤ n− 1.

4.1.1.5 Impossibility of multisigning

Using a toy example, we are going to explain why the key pair of the Lamport

scheme cannot be used more than once. Suppose n = 3,

X =









x00 x01 x02 x03 x04 x05

x10 x11 x12 x13 x14 x15

x20 x21 x22 x23 x24 x25









and

Y =









y00 y01 y02 y03 y04 y05

y10 y11 y12 y13 y14 y15

y20 y21 y22 y23 y24 y25









.
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Let d = (0, 1, 1) be the hash of a message m. Then, according to the signature

generation algorithm presented in Section 4.1.1.3,

σ =









x00 x03 x05

x10 x13 x15

x20 x23 x25









is the signature of d. If we use the same key pair to sign another message m′ with

hash d′ = (1, 1, 0), then the new signature σ′ is

σ′ =









x01 x03 x04

x11 x13 x14

x21 x23 x24









.

Notice that both signatures σ and σ′ reveal pieces of the signature key, then an

attacker can sign d′′ = (1, 1, 1) without knowing of the signature key, i.e., it is not

possible multi-signing.

4.1.1.6 Security of Lamport scheme

In this section, we are going to present a security proof of the Lamport

scheme in the standard model following (Bernstein et al., 2008). Specifically, we

are going to present a proof where the Lamport scheme, as a one-time scheme, is

EUF-1CMA secure.

To achieve EUF-1CMA the one-time function used in the Lamport scheme

will be replaced by the following family of one-way functions,

F = {fk : {0, 1}n → {0, 1}n |k ∈ K} ,

where K is a finite set and its elements are called keys.

Another modification in the key generation is that the Lamport scheme differs

slightly from W-OTS and works as follows. On input of 1n for a security parameter
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n a key of K is chosen randomly with the uniform distribution. The key-pair is

similar to W-OTS (see Section 4.1.1.2). The single difference is that k is part of

the public key.

To show that Lamport scheme is EUF-1CMA, we are going to follow a classic

reduction proof presented in Bernstein et al. (2008) that is, we use a forger of

the Lamport scheme to construct an adversary Apre on the one-wayness of F .

Algorithm 1 shows how a forger ForSign(sk,.)(pk) for the Lamport scheme can be

used to construct that adversary. The adversary simulates the signing oracle.

Algorithm 1 Apre

Input: k
$←− K and y = fk(x), where x

$←− {0, 1}n
Output: x′ such that y = fk(x

′) or failure
1: Generate a key-pair (X, Y ) of the Lamport scheme.

2: Choose a
$←− {0, · · · , n− 1} and b

$←− {0, 1}.
3: Replace ya[b] by y in the verification key Y of the Lamport scheme.
4: Run ForSign(sk,.)(pk).
5: When ForSign(sk,.)(pk) asks its only oracle query with M = (mn−1, · · · ,m0):
6: a) if ma = (1− b) then sign M and respond to the forger ForSign(sk,.)(pk) with

the signature σ.
7: b) else return failure.
8: When ForSign(sk,.)(pk) outputs a valid signature σ′ = (σ′

n−1, · · · , σ′
0) for a mes-

sage M ′ = (m′
0, · · · ,m′

n−1):
9: a) if m′

a = b then return σ′
a as preimage of y.

10: b) else return failure.

The goal of the adversary Apre is to obtain a x′ such that y = fk(x
′) for a

given pair k, y provided as input. Apre begins by generating a regular key pair of

the Lamport scheme, and by choosing a random position a and random binary

value b (Lines 1,2). Then Apre uses y to replace it in Y using the random elements

calculated previously. Specifically, Apre replaces ya[b] by y in the verification key

Y of the Lamport scheme (Line 3). Next, Apre calls the forger and waits for it to

ask an oracle query. As we have said, Apre plays the role of signing oracle. The

forger query can only be answered if the message does not contain the value b in

the position ma, in case it happens then Apre returns failure (Lines 5, 6, 7). The

forgery produced by ForSign(sk,.)(pk) is only valid if m′
a = b, in this case the output

of Algorithm 1 is σ′
a, otherwise the output is failure (Lines 8, 9, 10).
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We now compute the success probability of Apre. We denote by ǫ the forger’s

success probability for producing an existential forgery of the Lamport scheme and

by t its running time. By tGen and tSig we denote the times the Lamport scheme

requires for key and signature generation, respectively. Since b is selected randomly

with the uniform distribution, the probability for ma does not contain the value

b in the position a is 1/2. Since M ′ must be different from the queried message

M , there exists at least one index c such that m′
c = 1 − mc. Apre is successful

if c = a, which happens with probability at least 1/2n. Hence, the adversary’s

success probability for finding a pre-image in time tow = t+ tSig + tGen, is at least

ǫ/4n. We have proved the following theorem.

Theorem 4.1. Let n ∈ N , let K be a finite parameter set, let tow, ǫow be positive

real numbers, and F = fk : {0, 1}n → {0, 1}n |k ∈ K be a family of (tow, ǫow) one-

way functions. Then the LD-OTS variant that uses F is (tots, ǫots, 1) existentially

unforgeable under an adaptive chosen message attack with ǫots ≤ 4nǫow and tots =

tow − tSig − tGen where tGen and tSig are the key generation and signing times of

Lamport scheme, respectively.

4.1.2 Winternitz

The Winternitz scheme (Merkle (1990)) solves the problem of large keys

and signature sizes of the Lamport scheme. In the same way as the Lamport

scheme, the Winternitz scheme (W-OTS) assumes the existence of a hash function

g : {0, 1}∗ → {0, 1}m and a one-way function resistant to pre-image h : {0, 1}n →

{0, 1}n. Using these primitives, we describe below the W-OTS algorithms.

4.1.2.1 W-OTS Key Generation

Instead of signing a digest bit by bit as in the Lamport scheme, the W-OTS

signature algorithm divides the digest into equal parts and then signs these parts.

The steps for the key generation are

1. Select an integer w ≥ 2, which would be the size of the partitions of the
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message to be signed;

2. Compute the number of partitions

t1 =
⌈ r

w

⌉

;

3. Compute

t2 =

⌈

⌊log2 t1⌋+ 1 + w

w

⌉

,

which will be used to prevent a type of attack against W-OTS. Let t =

t1 + t2;

4. The signature key isX = (x0, x1 · · · , xt−1) ∈ {0, 1}n,t, where the bit-strings

xi with 0 ≤ i ≤ t− 1 are randomly chosen;

5. The verification key Y is computed by applying g 2w−1 times in each bit-

string xi of the signature key, i.e., Y = (y0, · · · , yt−1) with yi = h2
w−1(xi).

The size of a Winternitz signature is roughly mn/w bits and signing roughly re-

quires 2wm/w hash operations, where m is the bit length of the hash value to be

signed, n is the output length of the hash function used in the scheme, and w is

the Winternitz. This last parameter determines a trade-off between signature size

and the runtime of signature.

4.1.2.2 W-OTS Signature Generation

Compute the digest d of message m to be signed using g, i.e., g(m) = d =

(d0, · · · , dn−1). Add zeros to d until it is divisible by w. The partition of d into t1

w-sized parts is

d = b0||b1|| · · · ||bt1−1.

Note that each element bi can be transformed into base-10 representation and

identified with integers {0, · · · , 2w − 1}.
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Calculate the checksum

c =

t1−1∑

i=0

2w − bi.

The maximum number of bits representing c in binary base is ⌊log2 t1⌋ + w + 1.

Indeed, note that c = t12
w −

∑t1−1
i=0 bi ≤ t12

w and the number of bits required to

represent t12
w is ⌊log2 t12w⌋+ 1 = ⌊log2 t1⌋+ w + 1.

Similarly, split the binary representation of c into t2 w-sized parts, that is

c = c0||c1|| · · · ||ct2−1 and compute the signature as

σW-OTS = (σ0, · · · , σt−1) = (hb0(x0), · · · , hbt1−1(xt1−1), h
c0(xt1), · · · , hct2−1(xt−1)).

Why does the signer must sign the checksum c? Suppose a Winternitz

scheme with parameter w = 2 where the signer does not sign the checksum, then

t1 = 2. Using this scheme suppose that we sign the hash d = 1101, then σW-OTS =

(h3(x0), h
1(x1)). An attacker could forge this scheme intercepting d and changing

it to d = 1111. Since, h1 is known the attacker could change σW-OTS by σ′
W-OTS =

(h3(x0), h
3(x1)), which is a valid signature too.

4.1.2.3 W-OTS Verification

To verify the signature σW-OTS of the message M , compute the values bi and

ci in the same way as described above, then compute

y′ = (h2
w−1−b0(σ0), · · · , h2

w−1−bt1−1(σt1−1), h
2w−1−c0(σt1), · · · , h2

w−1−ct2−1(σt−1)),

and compare y′ with Y. The signature is valid only if y′i = yi, ∀i.
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4.1.2.4 Security of the Winternitz scheme

There is an extensive security proof against an EU-CMA attack and an SU-

CMA attack in the standard model in (Hülsing, 2013a).

4.1.3 W-OTS+

Hülsing (2013b) proposed a type of W-OTS which has two properties: tight

and exact. The first property guarantees smaller signatures, and key sizes, in

relation to W-OTS (about 50% less than W-OTS). The second property allows

computing the exact parameters for the scheme. Also, the second property is

guaranteed due W-OTS+ presents a security proof in the standard model.

In the same way as W-OTS, W-OTS+ is parameterized by an integer w which

determines a trade-off between the signature size and the runtime of the signature

generation. The parameter n determines the security of W-OTS+ and m is the

length of the message. W-OTS+ uses two cryptographic primitives g and Fn where

g : {0, 1}∗ 7→ {0, 1}m is a cryptographic hash function and F is a family of keyed

functions defined as

Fn = {fk : {0, 1}n → {0, 1}n |k ∈ Kn}

where Kn is the key space.

A new function is introduced by Hülsing: cik(x, r). This function on input of

value x ∈ {0, 1}n, iteration counter i ∈ N, key k ∈ K and randomization elements

r = (r1, · · · , rj) ∈ {0, 1}n×j with j ≥ i, works in the following way. In case i = 0,

c returns x (c0k (x, r) = x). For i > 0 c is defined recursively as

cik(x, r) = fk(c
i−1
k (x, r)⊕ ri).

As in W-OTS, there are two parameters which allows to sign groups of bits,

t1 =
⌈ r

w

⌉

,
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t2 =

⌈

⌊log2 t1⌋+ 1 + w

w

⌉

,

where r is the length of the message to be signed. Another parameter is t = t1+ t2.

Next, we are going to describe the algorithms of W-OTS+ using fictional

characters Alice and Bob.

4.1.3.1 Key Generation

1. Alice selects t n-bit strings xi, 0 ≤ i ≤ t, uniformly at random;

2. Alice selects w − 1 n-bit strings ri, 0 ≤ i ≤ w − 2, uniformly at random;

3. Alice chooses a function key k
$←− K;

4. The signature key (X, r) consists of the first t selected n-bit strings xi,

i.e. X = (x0, · · · , xt) and the last w − 1 selected n−bit strings ri. i.e.

r = (r0, · · · , rw−2);

5. The verification key is computed as Y = (y0, · · · , yl) where y0 = (r, k) and

yi = c2
w−1

k (xi, r), 1 ≤ i ≤ l − 1.

4.1.3.2 Signature Generation

To sign the message m with the private key X Alice follows the next steps.

1. Split m into t1 w−sized parts. Let mi, 0 ≤ i ≤ w − 1, the i− th w−sized

part of m. Let αi, 0 ≤ i ≤ w − 1, the decimal representation of mi;

2. Split a =
∑t1−1

i=0 2w − bi into t2 w−sized parts. Let ai, 0 ≤ i ≤ w − 1, the

i− th w−sized part of a. Let βi, 0 ≤ i ≤ w−1, the decimal representation

of ai;

3. The signature is

σW-OTS+ = (σ0, · · · , σt−1)

= (cα0

k (x0, r), · · · , cαt1−1

k (xt1−1, r), c
β0

k (xt1 , r), · · · , c
βt2−1

k (xt−1, r)).
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4.1.3.3 Signature Verification

To verify σ under the public key Y Bob follows the next steps:

1. Repeat the step 1 and the step 2 of the Signature generation;

2. Compute

y′ = (y′0, y
′
1, · · · , y′t)

= ((r, k), c2
w−1−α0

k (σ0, rα0,w−2),

· · · ,

c
2w−1−αt1−1

k (σt1−1, rαt1−1,w−2),

c2
w−1−β0

k (σt1 , rβ0,w−2),

· · · , c2
w−1−βt2−1

k (σt−1, rβt2−1,w−2));

3. Accept if y0 = (r, k) and if y′i = yi, 1 ≤ i ≤ t.

4.1.3.4 Security of W-OTS+

There is an extensive security proof in the standard model in (Hülsing,

2013a).

4.2 Merkle Signature

The Merkle scheme (Merkle, 1990) lies in the hash-function-based digital

signature scheme and uses trees (called Merkle trees) to sign several messages with a

single public key. The Merkle scheme employs both a hash function and a one-time

signature scheme. The original Merkle scheme has a huge private key and its key-

generating and signing time are long. Before 2015, attempts to solve those problems

can be found in Buchmann, Garćıa, Dahmen, Döring, and Klintsevich (2006a);

Buchmann, Dahmen, Klintsevich, Okeya, and Vuillaume (2007); Dahmen, Okeya,

Takagi, and Vuillaume (2008); Buchmann et al. (2011); Hülsing (2013b). Despite

the proposed advances, a problem remained, namely, the Merkle scheme is stateful,
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that is, the signer must keep track of the number of signatures. A stateful scheme

cannot perform signatures in parallel. To solve the stateful problem, Bernstein,

Hopwood, Hülsing, Lange, Niederhagen, Papachristodoulou, Schneider, Schwabe,

and Wilcox-O’Hearn (2015) proposed to use few-time signatures instead of the

one-time signature scheme.

Let k be a positive integer which is the security parameter of the Merkle

signature. This scheme uses a hash function

g : {0, 1}∗ × F
R
2 → F

k
2,

and any one-time signature as main primitives. Besides the one-time signature

explained in the previous section, and those which will be present in the next

section, there is a survey Villányi (2010), showing several others one-time signature

schemes used in Merkle scheme.

Next, we describe their algorithms using Bernstein et al. (2008) as main

reference.

Key Generation. Let H > 1 be an integer. Let 2H be the number of messages

that an instance of the Merkle scheme will be able to sign and verify. Then, to

generate the public and private keys the signer needs to create 2H instances of a

one-time Signature (OTS) scheme. We will denote the ith signature and verification

keys of each instance as Xi and Yi, respectively. Using Yi, 0 ≤ i ≤ 2H − 1, the

signer generates the public key constructing a binary tree, denoted as Merkle tree.

The leaves of the Merkle tree are the digests g(Yi), 0 ≤ i ≤ 2H−1. The inner nodes

are the hash values of the concatenation of their left and right children. Hence,

the root of the Merkle tree is a public key of the scheme. The private key consists

of the sequence Xi, 0 ≤ i ≤ 2H − 1. To be more precise, we denote the nodes of

the Merkle tree as vh[j], 0 ≤ j ≤ 2H−h, where h ∈ {0, · · · , H} is the height of the

node. Then

vh[j] = g(vh−1[2j]‖vh−1[2j + 1]), 1 ≤ h ≤ H and 0 ≤ j ≤ 2H−h. (4.1)
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Signature Generation. To sign a message M the signer computes d = g(M).

After that, the signer creates an OTS signature σOTS using the key Xs. Let Ys

the corresponding verification key associated with Xs. Then, for the verifier to be

convinced of the validity of Ys, the signer should include an authentication path

As, which allows the verifier to construct a path from the leaf g(Ys) to the root

of the Merkle tree. Let h be the height of each node on the path from the leaf

g(Ys) to the Merkle tree root. Then, the authentication path is computed using

the following construction:

ah =







vh[s/2
h − 1], if ⌊s/2h⌋ ≡ 1 mod 2

vh[s/2
h + 1], if ⌊s/2h⌋ ≡ 0 mod 2

for h = 0, · · · , H − 1. Hence, the s-th signature is

σs = (s, Ys, σOTS,

As
︷ ︸︸ ︷

(a0, · · · , aH−1)).

Signature Verification. Verifying σs = (s, Ys, σOTS,

As
︷ ︸︸ ︷

(a0, · · · , aH−1)) consists of

two steps. In the first step, the verifier validates the one-time signature σOTS of

the digest d using the one-time verification key Ys and the verification algorithm

of the OTS scheme. In the second step, the verifier validates the authenticity of

the one-time verification key Ys by constructing a path (p0, · · · , ph) from the leaf

v0[l] to the root of the modified Merkle tree. The verifier uses the index s, the

authentication path (a0, ..., ah−1), and applies the following construction:

ph =







g(ah−1‖ph−1), if ⌊s/2h−1⌋ ≡ 1 mod 2

g(ph−1‖ah−1), if ⌊s/2h−1⌋ ≡ 0 mod 2

where h = 1, ..., H and p0 = g(Ys). The index s is used for deciding in which

order the authentication path nodes and the nodes on the path from leaf g(Ys) to

the Merkle tree root are to be concatenated. The authentication of the one-time

verification key Ys is successful if and only if pH is equal to the modified Merkle
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tree root, which is part of the public key.

In modern implementations of the Merkle scheme, it is used several strategies

to generate the public and private keys. In the following paragraphs, we describe

some of them.

To generate the public key, the tree hash algorithm Merkle (1990) is used .

This algorithm calculates the root of the Merkle tree efficiently. The algorithm does

not store the full hash tree. Instead, successively computes leaves and, whenever

possible, computes their parents. To achieve this, the tree hash algorithm uses a

stack.

In Szydlo (2004), there is a proposal to compute the authentication paths

efficiently. To achieve this, the authors use an array of stacks lst. This same array

is used in the tree hash algorithm to store the first authentication path while the

root of the Merkle tree is calculated simultaneously.

To generate the private key usually, the strategy presented in Buchmann,

Garćıa, Dahmen, Döring, and Klintsevich (2006b) is used. In this work, we called

it as OTS private strategy. This strategy avoids storing the whole sequence Xi,

0 ≤ i ≤ 2H−1, as private key. Instead a R-bit seed is used as private key. The first

step of that strategy is to choose a R-bit seed Seed0 uniformly at random, which

will be a private key. To generate the whole sequence Xi, it is used SeedOTSi,

0 ≤ i ≤ 2H − 1. Each SeedOTSi is computed iteratively by using a PRNG

function defined as follow:

PRNG(Seedi) = (Seedi+1,SeedOTSi + 1), 0 ≤ i ≤ 2H − 1. (4.2)

The seed SeedOTSi is updated during each call to the PRNG function. The same

time that SeedOTSi is computed, the new seed Seedi+1 is computed too. This

last seed will be used for the generation of the next signature key Xi+1. The use of

the PRNG function in this strategy ensure the forward secrecy property, because

in order to calculate Xi only knowledge of Seedi is necessary.
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Chapter 5

Code-based Cryptography

5.1 KKS signature

Kabatianskii et al. (1997) proposed a one-time signature scheme based on

the intractability of decoding linear error-correcting codes. This scheme, called

KKS, was motived by the lack of signature schemes based on codes and was the

first to use general linear codes in this area. General linear codes help to simplify

the KKS construction.

Otmani and Tillich (2011) proposed the best-known attack against KKS,

however, as their authors pointed out, such attack does not compromise the security

of KKS, when the parameters are carefully selected. We will check these parameters

produce key sizes that are bigger than those presented in the original paper. KKS

lacks a security proof, and that is why Barreto et al. (2011) created a variation

which is secure in the random oracle model. We will review this variation in Section

5.2.1.

In the next paragraphs, we follow the rationale presented by Kabatianskii

et al. to construct digital signature schemes based on error-correcting codes. After

that, we describe three KKS variations that appeared in their original paper. In

the final part of this section, we present the Otmani and Tillich (2011) attack and

we also calculate the new parameters of KKS that resist this attack for several

security levels.

Analyzing the Niederreiter scheme, one could think a natural way to con-
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struct a signature scheme based on codes. First, let us recall the Niederreiter

scheme presented in Section 3.2. To encrypt a message m, under the public key Ĥ,

one should encode m in a vector e with Hamming weight t. Then, the ciphertext

is s = Ĥe.

Let (P,H, S) be the private key associated to Ĥ. Also, let ψ be an efficient

decoding algorithm for the code described by H such that it can be correct up

to t errors. A natural way to construct a signature scheme inspired in the ideas

of Niederreiter is to assume that s is the message we want to sign. Thus, to

generate a signature for s one should compute e = ψ
(
sS−1

)
P−1 and then obtain

the message-signature pair (s, e). Obviously, the problem is that not all messages

s are decodable with ψ. Then it is necessary to construct an application between

the set of messages M and the set of decidable vectors SH =
{
He : e ∈ F

n,t
2

}
.

A first attempt to construct this application is φ′(i) = Ĥβ(i), where β(i)

is an encoding function, see for example the ranking function defined in Section

2.2. Clearly this construction can be broken easily, because anyone is able to

generate a message-signature pair (s (m) , β (m)). Another approach could be to

pick randomly an application φ from the set of M ! applications M → SH. The

problem with this new approach is that it is necessary M log(M) bits to store φ

(Cayrel, Otmani, and Vergnaud, 2007).

Kabatianskii et al. (1997) created three ways to construct the application φ

efficiently. Following the classification of (Cayrel et al., 2007), we present them in

the next subsections.

5.1.1 KKS-1

In KKS-1, the application φ is constructed in the following way. Given two

codes [N,K, d > 2t] − Cpublic and [N ′, K ′, t] − Chidden, where N > N ′, Cpublic is a

random binary code and Chidden is a equidistant code (see Section 2.4.1). Let H ∈

F
N×(N−K)
2 be the parity check matrix of Cpublic and let G ∈ F

N ′×K′

2 be the generator

matrix of Chidden. Let J ∈ {0, · · · , N} such that |J | = N ′. Let Fφ = HJG
T be
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the matrix representation of φ and let σ ∈ F
N
2 such that all entries are zero. To

sign a message m, firstly one computes mG and places the entries of the result on

σ ∈ F
N
2 in the positions indicated by J . To accept σ as a valid signature one needs

to verify that

Vm = Hσ. (5.1)

Notice that σ is the unique vector with Hamming weight t, otherwise the minimum

distance of Cpublic must be less or equal than 2t.

The problem to use equidistant codes is that the minimum distance of Chidden
must be t = 2K

′−1 and its length must be 2K
′ − 1 (see Section 2.4.1). These

constraints mean that KKS-1 is inapplicable in practice. To show this, suppose

that to reduce the size of the messages that will be signed, we use hash functions

with a security level of 256-bit. Then K ′ = 256 and N ′ = 2256 − 1. Since N > N ′,

both the sizes the signature and public key are too large.

5.1.2 KKS-2

As we have indicated above, the use of equidistant codes is not suitable to

construct Chidden because those codes generate keys of large sizes. To solve it,

Kabatianskii et al. proposed to use the dual code U of a binary BCH code with

length N ′ = 2l−1 and designed distance δ = 2s+1. With this kind of codes, t1 6= t2

but the hardness of solving the equation (5.1) is still guaranteed. Specifically, the

values of t1 and t2 are the extremes of the expression

∣
∣
∣wt(u)− N ′ + 1

2

∣
∣
∣ ≤ (s− 1)

√
N ′ + 1,

where u ∈ U . That expression is the Carlitz-Uchiyama bound on the weight of the

codewords that belong to BCH codes and was presented in Lemma 2.2.

The Example 1 and Example 2 in (Kabatianskii et al., 1997) show a com-

parison of the key sizes between KKS-1 and KKS-2, i.e., a comparison of the key

sizes using equidistant codes and BCH codes respectively. In that example, the
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improvement on the public key size is at least of 109.

5.1.3 KKS-3

Another way to reduce even more the sizes of the keys is to choose random

linear codes. The next theorem guarantees that the weight of the codewords of

random linear codes is inside a certain interval. Thus, the uniqueness of equation

(5.1) is still satisfied.

Theorem 5.1 (33, Kabatianskii et al. (1997)). Let [n′, k]− C be a random binary

code and v ∈ C, then

Pr

[
n′

2
(1− δ) ≤ wt(v) ≤ n′

2
(1 + δ)

]

= 1− 2−r′+n′H2(δ)+1,

where r′ = n′ − k, 0 < δ < 1 and H2(x) = −x log(x) − (1 − x) log(1 − x) is the

binary entropy function.

Following, we present the algorithms of KKS-3.

5.1.3.1 Key Generation

For the key generation, the signer Alice follows the next steps

1. Alice chooses N,K, n, t1 and t2 according to the required security level;

2. Alice draws a random (N −K)×N matrix H and randomly picks a subset

J of {1, · · · , N} of cardinality n;

3. Alice randomly picks a random k × n generator matrix G that defines a

code Chidden such that, with high probability, t1 ≤ |u| ≤ t2 for any non-zero

codeword u ∈ Chidden;

4. Alice computes V = HJG
T where HJ is the restriction of H to the columns

in J ;

5. The private key consists of (J,G) and the public key consists of (V,H).

46



5.1.3.2 Signature Generation

The signature σ of a message m ∈ F
k
2 of Alice is the unique vector σ of FN

2

such that σi = 0 for any i /∈ J and σJ = mG.

5.1.3.3 Signature Verification

To verify the signature σ of a message m, which was signed under the public

key (V,H), Bob checks if t1 ≤ |σ| ≤ t2 and if HσT = VmT . In case the two

conditions are satisfied the signature is valid, otherwise it is rejected.

5.1.4 Security of KKS

There are three kinds of attacks against KKS: 1) Attack that recovers G

using an ISD-based algorithm; 2) Attack that obtains a system of equations when

KKS is used as a few-time scheme; 3) Attack that uses a sophisticated method

presented in Otmani and Tillich (2011).

To recover the private key G is equivalent to decode Cpublic. In fact, the

columns of V are linear combinations of the columns of H. Each one of these linear

combinations has Hamming weight between t1 and t2. Thus, from the point of

view of solving V = HJG
T , KKS is resistant against the first attack as long as their

parameters are selected carefully.

There are two papers that exploit the weakness of KKS when used as a few-

time signature scheme. The first is (Cayrel et al., 2007) and the second is (Barreto

et al., 2011). In the next section, we present the attack described by Barreto et al.

against a variant of KKS. The attack presented in (Barreto et al., 2011) is an

improvement of (Cayrel et al., 2007).

As we have said, Otmani and Tillich (2011) proposed an attack against KKS

scheme. However, as their authors pointed out, such attack does not compromise

the security of KKS when the parameters are carefully selected. It just points out

that the region of weak parameters is much larger than previously thought. Here,

we study this attack and which we call Otmani-Tillich attack.
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The Otmani-Tillich attack uses the components of the public key, HR×N and

VR×k, to construct the parity check matrix Ĥ =
[
H|V

]
. Although, H and V are

generated at random, the code described by the parity check matrix Ĥ has the

following property: there are enough codewords with low Hamming weight, which

can be used in algorithms that find low-weight codewords, when using the original

parameters.

More specifically, note that the code Cpub described by the parity check matrix

Ĥ has lengthN+k and dimensionN+k−R. Also, note that valid message-signature

pairs in KKS satisfy the following fact

Fact 1. Let (h, σ) a valid message-signature pair where h ∈ F
k
2 and σ ∈ F

N
2 , then

1. (h|| (σ)) ĤT
= 0.

2. t1 ≤ wt(σ) ≤ t2.

The elements that satisfy both conditions of Fact 1 describe a code Chidden ⊂

Cpub, which has length N +k and dimension k. Let J∗ ⊂ [1, · · · , N ] be the support

of e and set J ′ = J ∪ J∗, then

Chidden =
{
(h||σ) ∈ F

k+N
2 : h ∈ F

k
2, σ ∈ F

N
2 , σJ ′ = hP+ e, σ[1, ··· , N ]\J ′ = 0

}
.

Chidden has dimension k and according to Theorem 5.1 the expected Hamming

weight of σ is n/2+n. Otmani and Tillich claim that n/2+n is much smaller than

the total length N . This strongly suggests using well-known algorithms for finding

low weight codewords to reveal codewords in Chidden and therefore valid message-

signature pairs. Otmani-Tillich attack uses an algorithm proposed by Dumer

(1991a), which is a variation of Stern’s algorithm. This algorithm has success

because the code described by Ĥ does not behave as a random code. In particular:

• There are many low-weight codewords Chidden ⊂ Cpub;

• The support of the codewords is limited to a minimal subset of positions

(of size n+ k in the one-time variant);
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• Part of the support is already known to the attacker (the rightmost k

positions).

The complexity of Otmani-Tillich attack is given by

O
(
N3

)
+O

((
(K + k + l) /2

p

))

+O

(

1

2l
(N −K − l)2

(
(K + k + l) /2

p

)2
)

,

where l is an integer ≤ 40 and p is an integer between 1 and 4.

Table 5.2 shows several parameters of KKS so that it resists the Otmani-

Tillich attack. The first column represents the work factor of the attack. The

second and third columns are the dimensions of G. The fourth and fifth columns

are the codimension and the length of H, respectively. The columns p and l refer

to the equation (5.1.4). The four last columns are 1) the GV bound, 2) the size

of the matrix V, 3) the size of the signature and 4) the work factor of one of the

best-known attacks against the syndrome decoding problem (Problem 2.1). The

best-known attack is the one presented in (Becker, Joux, May, and Meurer, 2012),

which has complexity O(2n/20), but for simplicity in its formula, we use the one

presented in (Dumer, 1991b).

Table 5.1: Suggested parameters for standard security levels

λ k n R′ = |H| N ′ l p GV |V| |h, σ| SDH

80 160 380 5000 10000 8 3 6 800160 4044 383

112 224 550 3700 7400 8 5 11 1657824 4717 563

128 256 630 9400 18800 8 5 11 4812800 6930 638

192 384 940 8750 17500 8 6 13 6720000 15382 946

256 512 1280 9450 18900 8 12 24 9676800 11333 1302

5.2 BMS-OTS

Barreto, Misoczki, and Simplicio Jr. (2011) introduced a new one-time sig-

nature scheme in a paper entitled “One-time signature scheme from syndrome
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decoding over generic error-correcting codes” (BMS-OTS). BMS-OTS is based on

the hardness of solving the syndrome decoding problem (SDP), and unlike other

signature schemes, based on that problem, BMS-OTS can be instantiated on gen-

eral linear error-correcting codes, rather than the restricted families such as Goppa

codes. This fact is important because the signer and the verifier do not spend re-

sources disguising or exposing the code. This resources reduction contributes to

the simplicity of this scheme.

BMS-OTS was inspired in both Schnorr (Schnorr (1990)) and KKS schemes

(Kabatianskii et al. (1997)). The Schnorr scheme is based on the difficulty to solve

the discrete logarithm problem, and the KKS scheme is based on the difficulty

to solve SDP. The signature and verification algorithms of BMS-OTS have steps

that are similar to the ones of the Schnorr scheme, see (Schnorr, 1990, p. 4) and

(Barreto, Misoczki, and Simplicio Jr., 2011, p. 4). The main difference between

BMS-OTS and KKS schemes is that BMS-OTS uses both a hash function and a

noise vector, while KKS does not use them.

BMS-OTS uses the Pointcheval-Stern definition (Pointcheval and Stern (1996))

to construct an EUF-1CMA security proof in the random oracle model. The use

of this definition is possible because, unlike KKS, BMS-OTS introduces a ran-

dom error noise and a constraint on the minimum distance of a random binary

code, which is part of the verification key. We describe in Section 5.2.6 how these

constraints make BMS-OTS meet the Pointcheval-Stern definition.

In the literature, there is an attack against BMS-OTS. This attack is based

on the information set decoding algorithm (ISD) (Prange (1962)) and consists of

using the best-known variation of the ISD algorithm to reveal the signature key, or

to retrieve the noise vector. An overview of this attack is presented is Section 5.2.7.

5.2.1 BMS-OTS Parameters

Let K,N,R, n, k, t1 and t2 be integers, where t1 ≤ t2, let λ be the security

level of BMS-OTS, and let J be a random subset of {1, · · · , N} of cardinality n.
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The current difficulty of the best-known attack against BMS-OTS has work factor

2λ

5.2.2 Key Generation

The private key, or signature key, consists of a generator matrix P ∈ F
k×n
2

and the set J . P describes a random [n, k]-code Chidden whose codewords have

Hamming weight between t1 and t2 with high probability, that is, t1 ≤ u ≤ t2,

where u belongs to the Chidden. If we choose the rows of P uniformly from F2

then by the central limit theorem the weight of the rows of P follows a normal

distribution with mean n/2 and standard deviation
√
n/2. In practice the authors

suggest to use t1 =
n− 3

√
n

2
and t2 =

n+ 3
√
n

2
due to the 3σ rule.

The public key, or verification key, is the pair (H,V) such that H ∈ F
R×N
2

is a parity-check matrix of an [N,N − K, d ≥ 4n + 1]-code called Cpub and V ←

HJP
T ∈ F

R×k
2 , where HJ is the restriction of H to the columns in J .

One can see that the consistency of this scheme relies on the difficulty of

recovering J . In fact, if J is known then the overdetermined linear system V =

HJP
T is solved in polynomial time.

5.2.3 Signature Generation

To sign a message m ∈ {0, 1}∗ under the private key P ∈ F
k×n
2 , the signer

must follow the next steps:

1. Selects e ∈ F
N
2 randomly, such that wt(e) = n;

2. Computes sT ← HeT ;

3. Computes h← f(m, s), where f : F∗
2 → F

k
2 is a hash function;

4. Computes c = y + e, where y is the unique vector in F
N
2 such that (i)

supp ⊂ J and (ii) yJ = hP.

The signature is the pair (h, c) ∈ F
k
2 × F

N
2 . Since the maximum weight of

the code generated by P is n, clearly wt(hP+ e) ≤ maxh wt(hP) + wt(e) = 2n,

51



and hence the legitimate signatures must satisfy wt(c) ≤ 2n. One can see that the

signature size is k + N bits. However, due to the compact representation theory

presented in Section 2.2, it is possible to reduce that size to k + log
(
N
2n

)
+ log(2n)

bits.

5.2.4 Signature Verification

To verify a signature (h, c) ∈ F
k
2 × F

N
2 of a message m ∈ {0, 1}∗ under the

public key (H,V) ∈ F
R×N
2 × F

R×k
2 , the verifier checks that wt(c) ≤ 2n, computes

sT ← HcT + V hT , v ← f(m, s), and accepts (h, c) ∈ F
k
2 × F

N
2 if and only if v = h.

Note that the consistency of this scheme is established by the fact that, by

definition of c, s and V, we have HcT = H(y + e)T = HJP
ThT + HeT = VhT + sT .

Thus, sT = HcT + VhT as expected, so it follows necessarily that v = f(m, s) = h.

5.2.5 The impossibility of multisigning

The BMS-OTS parameters and notations presented at the beginning of this

chapter are different from those presented in Barreto et al. (2011), in fact, we used

the parameters and notations presented in Otmani and Tillich (2011). Next, using

these new notations, we present an analysis of the impossibility of multisigning in

BMS-OTS due to Barreto et al. (2011).

If an attacker knows the set J , then the attacker can to solve the overdeter-

mined linear system HJP
T = V to retrieve P. Barreto et al. (2011) presented an

analysis to get J under the assumption that the same key-pair is used to sign l

messages. In the following paragraphs, we describe this analysis using statistics.

First, suppose that in the step 4 of the signature generation, no noise vector

is added to hP, i.e. cJ = hP. That is, each non-zero element in c reveals a position

in J . Since h is the result of f evaluated in (m, s), each element of c is non-zero

with probability 1/2, and thus each column reveals, on average, half of the still

unknown elements of J . Therefore, under these facts an attacker needs ln(n) + 1

valid signatures to recover P.
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In the last paragraph, we suppose that no noise vector is added to hP, how-

ever, in Barreto et al. (2011), the opposite happens. Next, we calculate how many

signatures l (at least) are necessary to recover J when a noise vector e is added to

hP. This calculation is due to Barreto et al. (2011), who used a single position of

J to simplify the problem.

The goal of Barreto et al. (2011) is to find an expression in function of l

using a counting procedure. The expression is obtained when the average of the

chosen signatures revealing an entry of J is greater than the average of the chosen

signatures falling outside J . First, we describe how to calculate the number of

times that an element of hP is in average 1. Next, we describe how to calculate the

number of times that an element of e is in average 1 too. After that, we calculate

the number of times that the combined contributions reveal or do not reveal an

entry of J .

Let Xi, 0 ≤ i ≤ l − 1 be random variables that describe the outcomes of an

entry of c = y+ e. Note that the j-th entry of hP contributes with probability 1/2

to the j-th entry of c to be 1; and the j-th entry of e contributes with probability

n/N to the j-th entry of c to be 1. By the central limit theorem, the sum of l

independent variables that are randomly sampled with probability δ has mean lδ

and standard deviation
√

lδ(1− δ). Thus, the number of times that an element

from hP assumes in average the value 1 has mean µP = l/2 and standard deviation

σP =
√
l/2. And, the number of times that an element from e assumes in average

the value 1 has mean µe = ln/N and deviation standard σe =
√

ln/N(1− n/N).

As we have said, the goal of Barreto et al. (2011) is to find an expression as

a function of l. That expression comes from the following sentence: The average

of the chosen signatures revealing an entry of J is greater than the average of

the selected signatures falling outside J . We denote the average of the chosen

signatures revealing an entry of J as A and the average of the chosen signatures

falling outside J as B.

To obtain l, the counting procedure consists in counting the number of sig-
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natures until revealing all columns of J in average, that is, A(l) > B(l), where A(l)

is the minimum number of signatures revealing all columns of J , and B(l) is the

maximal number of signatures that does not reveal J . Let m0 be the number of

standard deviations. Then, A(l) = (µP−m0σP)−(µe+m0σe) and B(l) = µe+m0σe.

Reducing the expression A(l) > B(l), we obtain

l ≥ m2
0

(

1 + 4
√

(n/N)(1− n/N)

1− 4n/N

)2

.

5.2.6 EUF-1CMA security

The authors of BMS-OTS said that they were inspired by Schnorr scheme.

The latter scheme has a proof in the random oracle model, which was developed by

Pointcheval and Stern (1996). To formalize this proof, they modified the Schnorr

scheme slightly, and also created a class of signature schemes called Pointcheval-

Stern. The definition of this scheme is used in BMS-OTS to obtain a proof in the

random oracle model. The following paragraphs describe this definition and why

BMS-OTS achieves that definition.

Definition 5.1 (Pointcheval-Stern). Given a message m, the Pointcheval-Stern

scheme produces a triple (σ1, h, σ2). This triple needs to meet the following rules.

σ1 must be randomly sampled from a large set, h must be the hash value of (m, σ1),

and σ2 only depends on σ1, the message m, and h.

In the case of BMS-OTS, the triple is (s, h, c). s is clearly sampled from a

large set
(
N
n

)
and h is indeed the hash value of (m, s). For the third rule, c depends

on s through of e because there is a unique e of weight n for a given valid s due

to the fact that the minimum distance of the code is d > 4n+1. Thus, BMS-OTS

meets the Pointcheval-Stern definition. To show that there is a unique e such that

eHT = s and wt(e) = n, one can suppose that there exist another e′ such that

e′HT = s and wt(e′) = n. In this case, we have (e+ e′)H = 0, that is, e+ e′ ∈ Cpub.
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Because the Hamming weight of both e and e′ is n, the vector (e+e′) has Hamming

weight at most 2n, but this is contradictory with d > 4n+ 1.

Another great contribution to cryptography presented in Pointcheval and

Stern (1996) is the Forking lemma. This lemma helps to demonstrate that the

Pointcheval-Stern signature schemes are provably secure in the random oracle

model. Below, we present that lemma and also, we describe how it is used to

prove that BMS-OTS is provably secure in the random oracle model.

Lemma 5.1 (The Restricted Forking Lemma). Let Apre be a probabilistic poly-

nomial time turing machine, given only the public data as input. Let qH be the

number of queries that Apre can ask to the random oracle. If Apre can find, with non-

negligible probability, a valid signature (m, σ1, h, σ2) within time bound T and prob-

ability ǫ ≥ 7qH/2
λ, then there is another machine which has control over Apre and

produces two valid signatures (m, σ1, h, σ2) and (m, σ1, h
′, σ2) with non-negligible

probability, with the same random tape and a different oracle such that h 6= h′ in

expected time T ′ ≤ 84480qHT/ǫ.

Proof. (Pointcheval and Stern, 2000, p. 16)

Collorary 1. In the conditions of the Restricted Forking Lemma, for any given

l, there is a machine Al that can produce l valid signatures (m, σ1, hj, σ2, j), j =

1 · · · l, such that hj are all distinct, in expected time T ′ ≤ 84480lqHT/ǫ.

Proof. (Barreto et al., 2011, p. 8)

Theorem 5.2 (The General Forking Lemma). Let Apre be a probabilistic polyno-

mial time Turing machine whose input only consists of public data. Let qH and qS

be the number of queries that Apre can ask to the random oracle and the number

of queries that Apre can ask to the signer, respectively. Assume that, within a time

bound T , Apre produces, with probability ǫ > 10(qS + 1)(qS + qH)/2λ, a valid sig-

nature (m, σ1, h, σ2). If the triples (σ1, h, σ2) can be simulated without knowing the

secret key, with an indistinguishable distribution probability, then there is another
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machine which has control over the machine obtained from Apre replacing interac-

tion with the signer by simulation and produces two valid signatures (m, σ1, h, σ2)

and (m, σ′
1, h

′, σ′
2) such that h 6= h′in expected time T ′ ≤ 6120686qHT/ǫ.

Proof. (Pointcheval and Stern, 2000, p. 19).

The following theorem states the BMS-OTS is secure against no-message

attacks. i.e. attacks where the adversary can query the hash oracle but not the

signer oracle.

Theorem 5.3. Assume that, within a time bound T , an attacker Apre performs an

existential forgery under a no-message attack against BMS-OTS, with probability

ǫ > 7qH/2λ where qH denotes the number of queries that Apre can ask to the

random oracle. Then the overdetermined linear system V = HJP
T can be solved in

expected time T ′ ≤ 684480lqHT/ǫ where l = O(λ).

Proof. (Barreto et al., 2011, p. 9)

In the General Forking Lemma, it is required that triples (s, h, c) can be

simulated without knowing the private key P. The following indistinguishability

result claims that.

Theorem 5.4. The triples (s, h, c) of the proposed scheme can be simulated without

knowing the private key P, in the sense of being indistinguishable from legitimate

triples unless the adversary is able to solve the overdetermined linear system V =

HJP
T .

Proof. (Barreto et al., 2011, p. 9).

Finally, the next theorem shows that BMS-OTS is EUF1-CMA.

Theorem 5.5. Let Apre be an attacker which performs, within a time bound T ,

an existential forgery under a one-chosen-message attack against BMS-OTS with

probability ǫ > 20(1 + qH)/2λ where qH denotes the number of queries that Apre

can ask to the random oracle. Then the overdetermined linear system V = HJP
T

can be solved within expected time T ′ ≤ 6120686lqHT/ǫ where l = O(λ).

Proof. (Barreto et al., 2011, p. 10).

56



5.2.7 Security of BMS-OTS

Like KKS, a ISD attack can be used against BMS-OTS to recover the sig-

nature key G, or to retrieve e. The structural attack presented in Otmani and

Tillich (2011) cannot be used against BMS-OTS. In fact, we would have to look

for codewords (σ, h) such that

1. HσT + FhT = HeT ;

2. wt(σ) ≤ 2n and wt(e) = n.

Let us assume that we want to forge a signature for a message x ∈ {0, 1}∗.

One has to solve points 1 and 2 but in the random oracle model, finding e given h

is hard (pre-image resistance of f and wt(e) = n). Also, if we first choose e, then

letting s = HeT and applying the attack by considering the following problem

1. Ĥx′ = s where Ĥ = (H|F) and x′ = (σ, h);

2. wt(σ) ≤ 2n.

It will not be sufficient because (σ, h) has to satisfy the verification equation h =

f(x,HσT − FhT ). The only way to deal with this problem is to compute h =

f(x,HeT ) and to set z = FhT + HeT , and then to search for σ such that

1. HσT = z;

2. wt(σ) ≤ 2n.

This is a classical syndrome decoding problem. Probably, this scheme needs to

have their parameters updated to avoid attacks based on the ISD algorithm, as

the one presented in Becker et al. (2012).

5.3 A new one-time signature

In this section, we present the first of our contributions, a new one-time

signature. The motivation for this contribution is the small number of digital

signatures based on codes and one-time that are hash free. In fact according
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our knowledge the last one-time signature with these features was proposed in

(Kabatianskii et al., 1997; Barreto et al., 2011). As we have studied, the one-time

signatures based on codes (Kabatianskii et al., 1997) basically maps the message

space to the set SH =
{
Hσ : σ ∈ F

n,t
2

}
, where H is a parity check matrix of a linear

random code C and t = w in the case of KKS and t = 2w in the case of BMS-OTS.

Then, the signature of a message m is a vector σ with Hamming weight less or

equal than an integer w in the case of KKS (and less or equal than 2w in the case

of BMS-OTS). To verify the signature, one verifies if σ has Hamming weight less

or equal than w in the case of KKS (or if σ has Hamming weight less or equal than

2w in the case of BMS-OTS). Also, one verifies if Vm = Hσ in the case of KKS (or

if s = Vm+Hσ in the case of BMS-OTS). As we have seen, both constructions fall

in the hardness of solving the linear syndrome decoding problem, which is proved

to be NP-complete.

A disadvantage of the one-time signatures based on codes cited above is their

large public key when random matrices are used in its construction. This happens

because three matrices are necessary to construct the map between the message

space and the set SH =
{
He : e ∈ F

n,t
2

}
. Two of these matrices make up the public

key, and the other, the secret key. Another disadvantage is that the existing one-

time signature schemes use hash function primitives. Thus, the security proof of

these schemes can be developed only in the random oracle model.

The aforementioned disadvantages motivated us to propose a new hash-free

one-time signature. In this proposal, only one matrix is necessary as public key.

The secret key is also a matrix, but a sparse one. To achieve this and for a selected

parameter t, we modify the set SH by

S ′
H = {ei ∈ F

n,w
2 : e0H = e1H = · · · = e2t−1H} .

Being a Lamport scheme, the drawback of our construction is the large signature

sizes, but in compensation a secure proof in the standard model could be done.
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5.3.1 Parameters

Choose the integers L, n, r, w′ and w such that Lw′ ≤ w, and chose a security

parameter λ such that the actual difficulty of SDP(Ln, Lr, w) meets the level 2λ.

Let g be a hash function where g : {0, 1}∗ → {0, 1}t.

5.3.2 Key Generation

1. Construct a matrix with the following structure

H =










M0,0 0 . . . 0

M1,0 M1,1 . . . 0

...
...

. . .
...

ML,0 ML,1 . . . ML−1,L−1










Here Mi,j, 0 ≤ i, j ≤ L − 1, is a random matrix of dimensions r × n such

that n≫ r.

2. Generate L random vectors si, 0 ≤ i ≤ L− 1.

3. Using the rows of H construct several linear, and underdetermined, systems

in the following way.

• For the first-row construct M0,0x = s0 and compute 2t solutions θ0 =
{
a00, a

0
1, · · · , a02t−1

}
such that wt(a0k) ≤ w′, 0 ≤ k ≤ 2t− 1.

• For the second-row construct 2t linear, and underdetermined, systems

using the previously calculated solutions. Specifically, using a00 con-

struct the linear, and underdetermined, system M1,1x = s1 +M1,0a
0
0.

Using a01 construct the linear, and underdetermined, system M1,1x =

s1 +M1,0a
0
1. Repeat this process for the remained solutions. Denote

θ1 =
{
a10, a

1
1, · · · , a12t−1

}
as the set where a10 is a solution of M1,1x =

s1 +M1,0a
0
0 with wt(a10) ≤ w′, a11 is a solution of M1,1x = s1 +M1,0a

0
1

with wt(a11) ≤ w′, and so on.

• Repeat the previous step for the remained rows.

4. Select a singular matrix S
$←− F

Lr×Lr
2 .

59



5. Compute Ĥ = SH.

6. Compute ŝ = Ss, where s = s0||s1|| · · · sL−1.

7. Permute Ĥ and ŝ in the same row positions. Let H̄ the output of the

permutation on Ĥ. Let s̄ the output of the permutation on ŝ.

8. Sort the elements of θ into the colexicographic order. Let θ̂ = {b0, · · · , b2t−1}

the output of the sorted θ.

The signature key is θ̂ and verification key consist of the pair (s̄, H̄) and

Y = {y0, y1, · · · , y2t−1} = {wt(b0),wt(b1), · · · ,wt(b2t−1)} .

5.3.3 Signature generation

Let m be a message to be signed with the signature key θ̂:

1. Compute the digest d of the message m, i.e. g(m) = d. Hereafter, we

denote the k-th bit of d as dk.

2. Compute the signature σ = (σ0, σ2, · · · , σt−1) where

σk = bdk , 0 ≤ k ≤ t− 1.

5.3.4 Signature verification

To verify the signature σ = (σ0, σ1, · · · , σt−1) of a signed message m using

the verification key (H̄, s̄), we must follow the next steps:

1. Compute d = g(m).

2. Verify that σkH̄
T
= s̄, 0 ≤ k ≤ t− 1.

3. Verify wt(σk)
?
= ydk , 0 ≤ k ≤ t− 1 .
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4. Verify that the elements of σ of the messagem are sorted in colexicographic

order.

Notice that it is necessary the inclusion of the Hamming weights of each entry

bi, i.e., Y . In fact, without these values any message m′ can be replaced by m.

Also note that if we want to sign a message with two equal contiguous bits an

attacker can flip one of these bits and the signature verification algorithm would

correctly verify this new message. To avoid this attack, we need to ensure that

wt(ai) 6= wt(aj), for i 6= j.

5.3.5 Running Time Complexity and Storage Space Complexity

First, we look at the sizes. A signature contains t vectors of length Ln and

Hamming weight Lw′. Thus, using the compact theory representation presented

in Section 2.2, we have that the signature size is

sSig = t log

(
Ln

Lw′

)

(5.2)

bits. The verification key contains s̄ and H̄. s̄ has Lr bits. H̄ can be represented

in a systematic form. This fact allows to use L2r(n − r) bits rather than L2rn.

Suppose that the number of bits used to represent an integer is sY, then Y has size

2tcY bits. Thus, the number of bits of the verification key is

sPK = Lr + L2(n− r)r + 2tsY.

Last, the signature key sSK contains 2t Ln-bit vectors. Using the compact repre-

sentation theory, we have sSK is 2t log
(
Ln
Lw′

)
.

For the running times, we only look at the worst cases. Let cPRNG be the cost

of generating a random element in F2, then the cost to generate H is O(cPRNGLrn).

To find the 2t − 1 solutions of each linear underdetermined sub-system si = xMi,

we use (Niebuhr, Cayrel, and Buchmann, 2011). This method is a variation of the

generalized birthday attack (Wagner, 2002) and works fine with instances of SDP
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when it has several solutions. This method has complexity of O(2a+
r

a+1 ), where

2a = w′.

Let cF be the cost of an arithmetic operation over F2, then the cost cS to

generate S is O(cF(Lr)
2n). The matrix-matrix multiplication SH costs O(L2r2n).

The cost of the matrix-vector multiplication Ss is O(L2r2). The cost to permute

the rows of Ĥ and ŝ is O(Lr). The cost to sort the t solutions in lexicographic

order is O(2tLn).

Thus, the key generation time is

cKg = O(cPRNGLrn) +O(L(2t− 1)2a+
r

a+1 ) +O(cF(Lr)
2n)

+O(L2r2n) +O(L2r2) +O(Lr) +O((2t− 1)Ln)

= O(L(2t− 1)2a+
r

a+1 ).

(5.3)

For the signature generation, we need a call to the hash function and construct the

signature selecting some elements of θ̂. Thus, the signature generation is given by

cSig = O(cg), (5.4)

where cg is the cost to compute the digest d. For the signature verification, 1) we

need a call to the hash function, 2) t matrix-vector multiplications, 3) t integer

comparisons and 4) verify that σ is sorted in lexicographic order. Thus, the total

cost cVer of the signature verification is given by

cVer = O(cg) +O(L2nr) +O(1) +O(t)

= O(cg + L2nr).

(5.5)

5.4 Security

We begin by showing that our proposal cannot be a multisigning scheme.

After, we show which types of attacks can be used against our proposal.
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5.4.1 Impossibility of multisigning

Notice that like the Lamport scheme a signature in our proposal is part of

the private key. This enable us to perform the next attack, for example. Let

t = 4. Suppose the signer signs two messages with digests d1 = (1, 0, 1, 1) and

d2 = (1, 1, 1, 0) using the same signature key. The signatures of these digests are

σ1 = (x3[1], x2[0], x1[1], x0[1]) and σ = (x3[1], x2[1], x1[1], x0[0]), respectively. Then

an attacker knows x3[1], x2[0], x2[1], x1[1], x0[0], x0[1] from the signature key. The

adversary can use this information to generate valid signatures for messages with

digests d3 = (1, 0, 1, 0) and d4 = (1, 1, 1, 1). This example can be generalized to

arbitrary security parameters. Thus, the adversary is not able to generate valid

signatures, as long as the parameters to construct H can be carefully selected and

the key-pair can be used only one time.

5.4.2 Best Known Attacks against our Proposal

Notice that our construction is based on the hardness of solving the linear

system H̄x = s̄, where wt(x) ≤ Lw, i.e., our construction falls in the SDP. As we

have said, the best-known ISD attack against SDP at the moment is considered

to be (Becker et al., 2012). One usually measures the complexity of decoding

algorithms asymptotically in the code length (Becker et al., 2012). In this way,

the complexity of this method against random linear codes is O(20.0494Ln). For

simplicity, in its general complexity formula, we to use the method proposed in

(Dumer, 1991b). This method has an asymptotic complexity of O(20.0679Ln) but,

its general complexity formula is

WFSD =

(
n
w

)

(
n−k−l
w−p

)√(
k+l
p

) (5.6)

where

l = log

√
(
k + l

p

)

(5.7)

The linear system H̄x = s̄ with the restriction wt(x) ≤ w is underdetermined
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and has several solutions since
(
N
w

)
> 2R. As we have said, an attack for this kind

of system is the generalized birthday attack (GBA) (Wagner, 2002). This attack

has complexity O(2a+
Lr
a+1 ), where a = log(w).

5.4.3 Parameters

According to equation (5.2), if we fix w′ and allow n to grow, we can get

smaller signatures. Also, note that if the values of n and r are too big, then the

signer will spend a lot of time to obtain θi. This happens because to find at least

one value of θi falls in SDP. In its turn, if the values of n and r are small, the sizes

of the signature key and the signature will be too big. In fact, suppose we want to

sign a 128-bit message m, and also we want a security level of 80-bit against both

the GBA attack and the ISD variation attack (Dumer, 1991b), then for GBA we

need

a+
Lr

a+ 1
= 80 (5.8)

with w = 2a (Niebuhr et al., 2011), and for the ISD attack, we need to satisfy

equation (5.10). According to (Finiasz and Sendrier, 2009) a must be approxi-

mately greater than 6 to achieve an 80-bit security level against GBA, thus from

(5.8), L > 549/r. If r is the smallest possible, i.e., r = 1, then L > 549. To

minimize w we need to set w′ = 1. Thus, w > 549. To achieve a security level of

80-bit against the attack of Dumer (1991a), we need to choose the smallest L, i.e.

L ≈ 549. Thus, n ≈ 11. Using the compact representation theory, we will need

about log2
(
5490
549

)
≈ 2569 bits to sign each bit of m. That is, for a security level

of 80-bit, the signature size will be at least 328830 bits, and the key size of the

signature will be at least 657660 bits. A similar behavior is expected with other

practical security levels.

For the cited reasons, the choice of the parameters of the system should be

done with great care because a bad choice can strongly affect the performance of

the system. One should first choose the security required λ. Then, the choice of

the parameters must follow the next simple rules. First, we must ensure that the
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expected number of solutions of H̄x = s̄ must be at least 2t, i.e., we must ensure

that 2−r
(
n
w′

)
≥ 2t. Also, we need to ensure that the running time complexity of

GBA to compute the 2t solutions is feasible. After that, we must ensure that the

selected parameters resist GBA, i.e.,

a+
Lr

a+ 1
≥ λ (5.9)

with w = 2a (Niebuhr et al., 2011). Finally, we must ensure that the selected

parameters resist the ISD attack. That is

WFSD ≥ λ. (5.10)

After testing several values and in order to achieve a security level of 80-bit, we

found that the parameters w′ = 8, r = 41, L = 14, n = 428 are possibly the best

ones. Thus, N = 5992, R = 574, w = 112.

Table 5.2 suggests parameters for several practical security levels. The pa-

rameters are selected taking into account the shortest signature keys.

Table 5.2: Suggested Parameters for several security levels

λ n r w′ L |sk| |pk| |sig| ISD GBA

80 428 41 8 14 141805 3126578 70902 371 80

112 422 54 16 19 330040 7174818 165020 934 120

128 422 54 16 21 214978 9122982 107489 1034 130

192 470 67 16 27 481497 19685538 240748 1231 194

256 668 92 16 26 487323 35824984 243661 1168 267

Tables 5.3 and 5.4, show a comparison between our proposal and other code-

based one-time signatures at 80-bit security level. Specifically, Table 5.3 shows

a comparison of our proposal with KKS and BMS-OTS. In this comparison, we

assume that Cpublic, of both KKS and BMS-OTS, is implemented with double-
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circulant codes. Table 5.4, shows a comparison of our proposal with KKS and

BMS-OTS, too. This time it is assumed that Cpublic, of KKS and BMS-OTS, is

implemented using random codes.

As you can see, when Cpublic of KKS and BMS-OTS is implemented with

double-circulant codes, they have better key and signature sizes. If Cpublic of KKS,

and respectively BMS-OTS, is implemented with random codes, the size of the

verification key of our proposal is less than the verification key of KKS and BMS-

OTS. Nevertheless, the size of the signature key and the private key of KKS, and

BMS-OTS, are less than our proposal.

Table 5.3: Comparing our proposal with other coding-based one-time signatures

that use double-circulant codes.

scheme |sk| bits |pk| bits sig hash free

KKS 2726 176900 4042 no

BMS-OTS 1288 496363 2062 no

Our 141805 3126578 70902 yes

Table 5.4: Comparing our proposal with other coding-based one-time signatures

that use random codes.

scheme |sk| bits |pk| bits sig hash free

KKS 2726 25000000 4042 no

BMS-OTS 1288 9507972 2062 no

Our 141805 3126578 70902 yes

Table 5.5 shows a comparison between our proposal and two known multisign

signature schemes — CFS and Stern1 . Our proposal has private and public key

sizes less than CFS but a greater signature size. In relation to Stern, our proposal

1 We use the version presented in (Gaborit and Girault, 2007).
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proposal has signature size less than Stern, but greater signature and verification

key sizes.

Table 5.5: Comparing our proposal with other coding-based multisign signatures

scheme |sk| bits |pk| bits sig hash free

CFS 444434 5898240 180 no

Stern 694 347 120000 no

Our 141805 3126578 70902 yes

For all cases, our proposal has a lower performance to generate the keys, due

to we use a exponential algorithm — GBA. However, for all cases our proposal

does not use hash function, thus a proof in the standard model can be obtained.
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Part III

DFA against an NSA’s proposal
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Chapter 6

Differential Fault Attack

It is shown that the security of cryptosystems relies on both their mathemat-

ical design and their physical implementation. Unsatisfactory features generated

naturally, or intentionality, on the physical implementations of a cryptosystem are

known as faults. An intentionally one is known as fault attack and is used to

extract the key, or some secret of a cryptosystem. The differential fault attacks

belong to the class of fault attacks and the first differential attack was proposed by

Biham and Shamir against DES in the paper entitled “Differential fault analysis of

secret key cryptosystems” (Biham and Shamir, 1997). In this chapter, we review

some basic concepts of this type of attack. But first, we introduce fundamentals

of fault attacks such as fault model and fault measurement.

6.1 Fundamentals of Fault Attacks

As we have said, a fault attack is a type of attack against the physical imple-

mentation of a cryptosystem. This type of attack can be achieved by introducing

the physical design in a hostile environment, or by changing the normal state of its

components. This procedure is known as fault injection. After that, the possibly

wrong outputs of the cryptosystem are observed in order to exploit some leaked

information.

To perform a fault attack, there exist basically two stages. The first one is

the fault analysis process and the second one is the fault measurement. The fault
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analysis process consists in analyzing analytically the success or failure of an attack

using a fault model. As we shall see below, to construct a fault model is necessary

to choose one or more fault techniques. The fault measurement consists basically

in executing the attack using the chosen techniques.

6.1.1 Fault Model

A fault model represents mathematically the properties of a fault injection.

Thus, it is possible to study a real-world fault injection from a theoretical point

of view. The modeled properties of a fault injection are the location of the fault

within the circuit, the number of bits affected by the fault, and the fault effect on

the bits (stuck-at, bit-flip, random, set-reset). Table 6.1 shows the possible fault

models assumed by an attacker.

Fault model Fault location Number of bits

Chosen bit fault Precise 1

Single bit fault Loose 1

Byte fault Loose 8

Random fault Loose Any

Table 6.1: Fault models assumed by an adversary

6.1.1.1 Fault Injection Techniques

There are several fault injection tools and techniques that aim to construct

fault models. The following are six possible techniques of fault injection.

• Clock Glitches. A clock glitch is the irregular behavior during a short

time interval of the clock frequency of a circuit. One of the most desired

effects with this type of technique is to interrupt the execution of an in-

struction. Clock glitches are easy to obtain and were the first to be used

in order to induce a faulty behavior in devices. Thus, it is a threat that

needs to be covered by circuits manufacturers.
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• Voltage Starving. It is a technique that consists in keeping the voltage

level supplied to a processor lower than its nominal one. The induced faults

resulting of this technique are known as data corruptions and instructions

swap (Barenghi, Bertoni, Parrinello, and Pelosi, 2009).

• Heating Up. It is a technique that consists in exploiting the leakage of

processed data by passively measuring the dissipated heat of the device.

(Hutter and Schmidt, 2014).

• Voltage Spikes. Voltage spikes (Hutter, Schmidt, and Plos, 2008, 2009)

are the sudden peak values in a voltage versus time graph due to abnormal

conditions like transient or voltage surges. Like clock glitches, voltage

spikes are easy to obtain and needs to be covered by circuits manufacturers.

• Electromagnetic Pulses. An electromagnetic pulse (EMP), also some-

times called a transient electromagnetic disturbance, is a short burst of

electromagnetic energy. Such a pulse’s origination may be a natural oc-

currence or man-made and can occur as a radiated, electric, or magnetic

field or a conducted electric current, depending on the source (Shurenkov

and Pershenkov, 2016). An example of this technique against AES can be

found in (Dehbaoui, Dutertre, Robisson, and Tria, 2012).

• Laser and Light Pulses. This technique causes transistors on a chip

to switch with photo-electric effects (van Woudenberg, Witteman, and

Menarini, 2011).

• Hardware Trojans. This technique requires that the adversary has ac-

cess to the circuit design, or fabrication. Once this is achieved, the adver-

sary injects malicious modifications in the hardware causing the circuit to

have altered functional behavior.

Each one of these techniques has characteristics that change a chosen bit, a

single bit, a byte or an random number of bits. These characteristics are classified
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according to the intensity, location, and duration of the fault injection. Also,

depending on the type of access that an attacker has to the circuit under attack the

techniques can be categorized into three types: 1) non-invasive, 2) semi-invasive,

and 3) invasive. Non-invasive techniques do not require modifications to the device

under attack, i.e., only the chip’s external interfaces are used. Invasive attacks

assume that the attacker has complete access to the internal structures of the

circuit. Thus, the attacker can directly eavesdrop upon buses, set or clear signals

and even modify the physical properties of the circuit. Generally, this category

requires a high expertise depending on the equipment, and the attacks have a high

cost. Semi-invasive attacks stand between noninvasive and invasive attacks. They

represent a big threat to the hardware security because they are almost as effective

as invasive attacks but can be low-cost like non-invasive attacks (Skorobogatov,

2005).

Table 6.2 shows the techniques described above together with its character-

istics, the models that they can generate, and its category (invasive, semi-invase,

or noninvasive).

6.2 Fault Attack Procedure

The fault attack procedure consists of two phases: the fault measurement

and the fault analysis. The fault measurement phase is the process to get faulty

data and the fault analyses techniques to process faulty and unaltered information.

In next section, we will see that the fault measurement phase consists of four

steps: fault injection access, fault injection, fault effect and fault observation.

Examples of fault analysis techniques are (differential fault analysis) DFA (Biham

and Shamir, 1997), collision fault analysis (CFA) (Hemme, 2004), ineffective fault

analysis (IFA) (Blömer and Seifert, 2003) among others. In Section 6.2.2, we review

DFA, which was used by us to attack the Simon family Beaulieu et al. (2013).
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Table 6.2: Fault injection techniques

Injection
Fault characteristic Fault Model

Invasiveness Equipment
Intensity Timing Duration Chosen bit Single bit Byte Random

Glitches Variable Precise Transient • • Noninvasive Low
Starving Variable Loose Transient • • Noninvasive Low
Spikes Fixed Precise Transient • Noninvasive Low
EM
Pulse

Variable Precise Transient • • • Noninvasive Low/Moderate

Laser
Pulse

Fixed Precise Transient • • • • Semi-invasive High

Trojans Fixed Precise Transient • • • Invasive Moderate
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6.2.1 Fault Measurement

The fault measurement phase consists of five steps (Ghalaty, 2016): Fault in-

jection access, fault injection, fault effect, fault observation, and fault exploitation.

Following, we give comprehensive definitions of these steps:

1. Fault Injection Access. This is the first and most important step. In this

step the attacker obtains physical access to the device under attack. For

example, to introduce Hardware Trojans the attacker needs to have access

to the circuit design to inject malicious modifications. The same happens

with laser and electromagnetic pulse-based fault attacks, i.e., the attacker

needs to have access to the chip surface. Also, the attacker needs to know

the data inputs and outputs of the device under attack. This access is

necessary to build later a model for the attack.

2. Actual Fault Injection. The second step of the fault measurement is to

disturb the operation of device under attack by applying a physical stress

on it. The applied physical stress pushes the device under attack out of

its normal operating conditions and causes faulty operation. Based on the

chosen fault injection method, the adversary can control the timing, loca-

tion, and intensity of the applied physical stress. Each value of these three

parameters affects the device under attack differently and causes different

faults in it. Therefore, the adversary needs to carefully set these param-

eters to create an exploitable fault in the device under attack (Ghalaty,

2016).

3. Fault Effect. As its own name says, the fault effect is the effect of the

applied physical stress. For example, an applied clock glitch might create

2-bit faults at the fault injection point. The adversary may need to apply

several physical stresses with different parameters to create the desired

fault effect on the device under attack (Ghalaty, 2016).

4. Fault Observation. To exploit fault injections an attacker needs to observe
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their probability of success. In (Yuce, Ghalaty, and Schaumont, 2015), it

is shown methods that can compute the probability of success of a fault

injection attempt in this phase using observability analysis.

5. Fault Exploitation. This is the final step, and here the attacker exploits

the observable effects and breaks the security.

6.2.2 Differential Fault Analysis

This fault analysis was applied for first time against DES (Biham and Shamir,

1997) and after that it was applied against several other cryptosystems. DFA basi-

cally is the analysis of a cryptographic cipher by the means of finding a relationship

between the difference in the input data and the output data. Ideally, the slightest

difference in input data (cleartext), even a single bit, should produce a completely

different cypthertext. However, if the cipher is not well-designed, a correlation

between the two resulting ciphertext might be observed. This correlation in turn

might be exploited to find out the key. This obviously requires a chosen cleartext

attack, which means the attacker needs access to the encryption mechanism, and

thus use it to encrypt any number of cleartexts he or she chooses. In the next

chapter, we present a study of differential fault analysis against Simon (Beaulieu

et al., 2013). We also present one of the main contributions of this thesis, that is

a DFA against Simon.
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Chapter 7

DFA against an NSA’s proposal

7.1 The Feistel Cipher

A Feistel cipher is a symmetric structure used in the construction of block

ciphers. The name comes from the German-born physicist and cryptographer Horst

Feistel who did pioneering research while working for IBM (USA); the cipher is also

commonly known as a Feistel network. Several block ciphers use this symmetric

structure, such as DES, Simon, SPECK, Blowfish, among others. The Feistel

structure has the advantage that the encryption and decryption processes are very

similar, even identical in some cases, requiring only a reversal of the key schedule.

Therefore, the size of the code or circuitry required to implement such a cipher is

nearly halved. In Figure 7.1, we depict the structure of a Feistel cipher, and below

we define it formally.

Definition 7.1 (251, Menezes, Vanstone, and Oorschot (1996)). A Feistel cipher is

an iterated cipher mapping a 2t-bit plaintext (L0, R0), for t-bit blocks L0 and R0, to

a ciphertext (Rr, Lr), through an r-round process where r ≥ 1. For 1 ≤ i ≤ r, round

i maps (Li−1, Ri−1)
Ki−→ (Li, Ri) as follows: Li = Ri−1, Ri = Li−1 ⊕ f(Ri−1, Ki),

where each subkey Ki is derived from a cipher key K.
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Figure 7.1: Feistel structure

A Feistel cipher was proved secure against chosen message attacks when the

number of iterations is three. And it was proved secure both against chosen mes-

sage attacks and chosen ciphertext attacks, if the number of iterations is four. Both

declarations were formalized into theorems and proved by Luby and Rackoff in the

paper entitled “How to Construct Pseudorandom Permutations from Pseudoran-

dom Functions” Luby and Rackoff. To prove the first theorem, Luby and Rackoff

showed that it is possible to construct an invertible pseudo-random permutation

generator with a three round Feistel cipher, and that it is possible to construct a

super pseudo-random permutation generator with a four round Feistel cipher.

7.2 The Simon Family Cipher

In 2013, the NSA’s members, Beaulieu et al., proposed a family of lightweight

block ciphers based upon Feistel structure. This family was designed with the aim

of having a better performance for both hardware and software in comparison to

other symmetric ciphers currently available in the field. Thus, its design provides

optimal performance on resource-constrained devices and provides implementation

on a wide range of devices. The Simon family is composed by five members corre-

sponding to 5 block sizes: 32, 48, 64, 96 and 128 bits. Also, each member supports

up to 3 key sizes. Hereafter, we will use the term Simon to refer to any of these

members.

The design of Simon is a classical Feistel scheme where each round of it

operates on two n-bit halves, the left half input and the right half input. Notice,

the general round block size is 2n. In the remainder of this section, we use n to
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refer to half of the block size. Also, as we will see in Section 7.2.1, each round uses

round keys, which are calculated from a master key. Each member of Simon uses

a master key from among three possibilities. The algorithm to calculate the round

keys differs depending on the master key sizes.

Each i-th round of Simon applies a non-linear, non-bijective, and non-invertible

function

F : Fn
2 → F

n
2

x 7→ ((x <<< 8)⊙ (x <<< 1))⊕ (x <<< 2)

(7.1)

to the left half input Li−1. After that, Li is computed in the following way: 1)

F(Li−1) is XORed to the right half input, Ri−1, and 2) a round key Ki is XORed

to the last output. To complete the operations of the i-th round, the i-th right half

input is assigned to the (i − 1)-th left half input, i.e. Ri = Li−1. The number of

rounds in Simon relies on the parameters presented in Table 7.1. After T , rounds

the ciphertext is obtained, i.e. the output of the last round is the ciphertext C.

As we have said, there are members of the Simon family for different key

sizes, block sizes, and number of rounds. The names of each member of Simon

with its parameters are presented in Table 7.1.

Table 7.1: Members of the Simon family with their parameters.

Cipher
Block size

2n
Key words

m
Key size
mn

Rounds
T

Index to z
j

Simon 32/64 32 4 64 32 0
Simon 48/72 48 3 72 36 0
Simon 48/96 48 4 96 36 1
Simon 64/96 64 3 96 42 2
Simon 64/128 64 4 128 44 3
Simon 96/92 96 2 92 52 2
Simon 96/144 96 3 144 54 3
Simon 128/128 128 2 128 68 2
Simon 128/192 128 3 192 69 3
Simon 128/256 128 4 256 72 4

In Table 7.1, zj, 0 ≤ j ≤ 4, is a constant sequence.
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7.2.1 Key Schedule

The key schedule of Simon is described as a recursive function that uses

two, three or four n-bit registers. We denote by m the number of registers used.

Depending on m, the recursive function can be:

m = 2: Ki = Ki−2 ⊕
(
Ki−1 >>> 3

)
⊕

(
Ki−1 >>> 4

)
⊕ c⊕ (zj)i−m

m = 3: Ki = Ki−3 ⊕
(
Ki−1 >>> 3

)
⊕

(
Ki−1 >>> 4

)
⊕ c⊕ (zj)i−m

m = 4: Ki =
(
Ki−4 ⊕Ki−3

)
⊕

(
Ki−1 >>> 3

)

⊕
((
Ki−3 ⊕

(
Ki−1 >>> 3

))
>>> 1

)

⊕ c⊕ (zj)i−m

(7.2)

where c = (2n − 1) ⊕ 3 is a constant value, (zj)i−m denotes the (i −m)-th bit of

zj, and i − m is taken modulo 62. The values of zj, 0 ≤ j ≤ 4, are depicted in

Table 7.2. The value of j depends on the selected Simon member. For example,

the value of j according Table 7.1 is Simon 32/64.

Table 7.2: The zj sequences used in the Simon key schedule.

j zj

0 11111010001001010110000111001101111101000100101011000011100110

1 10001110111110010011000010110101000111011111001001100001011010

2 10101111011100000011010010011000101000010001111110010110110011

3 11011011101011000110010111100000010010001010011100110100001111

4 11010001111001101011011000100000010111000011001010010011101111

7.3 DFA against Simon

Now, we study three DFA against Simon, including the one that was proposed

here. First, we present a DFA against Simon due to (Tupsamudre et al., 2014). In

that work, four models are studied: a chosen bit, a chosen byte, a random bit, and

a random byte. After that, a more efficient DFA due to Takahashi and Fukunaga
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(2015) is presented. In that work, the authors used a n-bit fault model to perform

the attack. At the end, we present our proposal.

7.3.1 Tupsamudre et al. Attack

In 2014, Tupsamudre et al. noted that there is information leakage due to the

AND operation used in function F . With this leak information and under certain

conditions, they constructed an attack to obtain the last-round key using DFA.

Specifically, they proposed four models: (1) a one-bit-flip model; (2) a random

one-byte model; (3) a chosen bit model, and (4) a chosen byte model. In this

section, we present these models, but firstly, we need to explain some facts about

the use of F and we need to explain what happens when some faults are introduced

in the latest rounds.

It can be seen from the application of F on Li−1 that the j-th bit of Li−1

affects possibly 3 distinct bits (j + 1)%n, (j + 2)%n, and (j + 8)%n of F (Li−1),

i.e. the bits:

F
(
Li−1

)

(j+1)%n
=

(

Li−1
j ⊙ Li−1

(j−7)%n

)

⊕ Li−1
(j−1)%n

F
(
Li−1

)

(j+2)%n
=

(

Li−1
(j+1)%n ⊙ Li−1

(j−6)%n

)

⊕ Li−1
j%n

F
(
Li−1

)

(j+8)%n
=

(

Li−1
(j+7)%n ⊙ Li−1

j%n

)

⊕ Li−1
(j+6)%n

(7.3)

where j ∈ {0, · · · , n−1}. Since Li = Ri−1⊕F (Li−1)⊕Ki−1, the same bit positions

of Li are also affected by the j-th bit of Li−1.

Another fact is that KT−1 and LT−2 are related through the next expression

KT−1 = LT−2 ⊕F
(
RT

)
⊕ LT . (7.4)

This fact is important because the success of Tupsamudre et al.’s attack is in

retrieving KT−1 using LT−2.

A third fact is the following: suppose a fault e is induced in the intermediate

result LT−2. Let
(
LT ∗

, RT ∗
)
be the resulting faulty ciphertext. Then, the fault e
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can be found using the next formula:

e = LT ⊕ LT ∗ ⊕F
(
RT

)
⊕F

(
RT ∗

)
. (7.5)

Since the output of correct and faulty computation is known, it is possible to

deduce the value and location of the fault e injected in LT−2 and, hence, it is

possible to determine the bits that are flipped in LT−2.

7.3.2 Bit-Flip Fault Attack on Simon at round T − 2

In the computation of F(LT−2), Tupsamudre et al. observed that if one of

the input bits of the AND operation is 0, then flipping the other input bit does

not affect the output bit of RT . Therefore, it is possible to deduce the bit LT−2

and consequently to retrieve the bit of KT−1 (see equation (7.4)). Let us explore

this point in more details.

Suppose a fault flips the j-th bit of the intermediate result LT−2 resulting in

a faulty ciphertext
(
LT ∗

, RT ∗
)
. Then, RT ∗

= LT−1∗ = RT−2⊕F
(
L(T−2)∗

)
⊕KT−2.

The XORed of the correct and the faulty right halve ciphertexts is written as

RT ⊕RT ∗

= F
(
LT−2

)
⊕F

(

L(T−2)∗
)

.

Because the j-th bit of LT−2 affects possibly 3 distinct bits of F
(
LT−2

)
, the cor-

rect computation of RT differs from its faulty computation in at most 3 distinct

positions:

(
RT ⊕RT ∗

)

(j+1)%n
=

(

LT−2
j ⊙ LT−2

(j−7)%n

)

⊕
((
LT−2
j ⊕ 1

)
⊙ LT−2

(j−7)%n

)

(
RT ⊕RT ∗

)

(j+8)%n
=

(
LT−2
j+7 ⊙ LT−2

j

)
⊕

(
LT−2
j+7 ⊙

(
LT−2
j ⊕ 1

))

(
RT ⊕RT ∗

)

(j+2)%n
= 1

(7.6)

Both values LT−2
(j−7)%n and LT−2

(j+7)%n can be deduced easily using their truth tables

(see Table 7.3 and Table 7.4). For example, looking at Table 7.3, we can deduce
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LT−2
(j−7)%n. In fact, if

(
RT ⊕RT ∗

)

(j+1)%n
is 0, then irrespective of the bit value LT−2

j ,

LT−2
(j−7)%n is 0, otherwise it is 1. In a similar way, by looking the Table 7.4, we can

deduce LT−2
(j+7)%n. In fact, if

(
RT ⊕RT ∗

)

(j+8)%n
is 0, then irrespective of the bit

value LT−2
j , LT−2

(j+7)%n is also 0, otherwise it is 1.

Table 7.3: Truth table for
(
RT ⊕RT ∗

)

(j+1)%n
.

LT−2
j LT−2

(j−7)%n

(
RT ⊕RT ∗

)

(j+1)%n

0 0 0

1 0 0

0 1 1

1 1 1

Table 7.4: Truth table for
(
RT ⊕RT ∗

)

(j+8)%n
.

LT−2
j LT−2

(j+7)%n

(
RT ⊕RT ∗

)

(j+8)%n

0 0 0

1 0 0

0 1 1

1 1 1

Since the values of LT−2
(j−7)%n and LT−2

(j+7)%n are known, it is possible to retrieve

the corresponding bits of KT−1 using Equation (7.4), i.e.

KT−2
(j−7)%n = LT−2

(j−7)%n ⊕F
(
RT

)

(j−7)%n
⊕ LT

(j−7)%n

KT−2
(j+7)%n = LT−2

(j+7)%n ⊕F
(
RT

)

(j+7)%n
⊕ LT

(j+7)%n.

(7.7)

Tupsamudre et al. showed that to retrieve the n-bit round key is necessary n/2

faulty ciphertexts if there is a control over the location where the faults were

added. If there is no control, they calculated the average of faulty encryptions in

an experimental way, see Table 7.5.
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Table 7.5: Bit-Flip Fault Attack on Simon assuming no control over the fault
position.

n bits
Avg. No. of Faulty

Encryptions
16 25
24 43
32 62
48 104
64 150

7.3.3 Random Byte Fault Attack on Simon at round T − 2

A most practical attack might affect a byte of LT−2. In this case, Tupsamudre

et al. showed that it is possible to use the same working principle explained in the

last section to retrieve KT−1. They experimentally found the average of random

fault injections that are required to retrieve KT−1. This average is shown in Table

7.6. They also showed that when there is a control over the location for fault

injections, the number of fault injections to retrieve KT−1 is n/8.

Generally with a single bit of an byte fault, we can retrieve two values of

LT−2. However, Tupsamudre et al. mentioned two exceptions: (1) the least and

most significant bits of the induced byte fault are one, and (2) a byte fault flips

two adjacent bits. In the first exception the adversary can retrieve only one bit of

the last-round, and in the second exception the adversary can retrieve four bits of

the last round but modifying slightly the formulas to deduce these bits.

Table 7.6: Average of faulty encryptions for the Random Byte Fault Attack on
Simon at round T − 2.

n bits
Avg. No. of Faulty

Encryptions
16 6
24 9
32 13
48 21
64 30
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7.3.4 n-bit Fault Attack on Simon

In a way similar to the last two attacks, Takahashi and Fukunaga analyzed

the input and output differences in the AND operation when a random fault injec-

tion is added on n bits in an intermediate position of Simon. They have precisely

calculated the average number of fault injections to obtain a round key by exam-

ining the relationships between the bits obtained through multiple fault injections.

Their analysis reduces significantly the average number of fault injections to re-

trieve LT−2. For instance, in Simon 128/128 the n-bit model uses 3.91 faults instead

of 8 used by the one-byte model. Also, they showed specifically what fault posi-

tions are necessary to obtain m round keys. With these m round keys and using

the key-schedule algorithm, they calculated the entire secret key of Simon.

7.4 One-Bit-Flip Fault Attack on Simon at round T − 3

In this section, we present the main idea of our attack, that is, a one-bit-

flip fault attack on Simon at round T − 3. This contribution was presented in the

Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2015 (Grados

et al., 2015)

We observed that if an adversary is able to flip a single round, then we can

retrieve information of two rounds. This is new compared with the one-bit-flip,

one-byte and n-bit models presented in Section 7.3.1, i.e., those which retrieve

information of only one round. Specifically, we will show that is possible to obtain

all bits of LT−2 and LT−3 injecting faults in LT−3. Also, we will show how to

retrieve m round keys using our modification.

Before explaining how to retrieve information of LT−2 and LT−3, using the

single round T − 3, we need to know what are the probabilities that an error

occurred in LT−3 affects 1, 2 or 3 bits of F
(
LT−3

)
. To achieve this, remember that

we can know the number of possible affected bits (1, 2 or 3 bits) due to equation

(7.3).

Without loss of generality, let L be a n-bit string. Let F be a non-linear
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function as defined in (7.1). If F (L∗) is the application of F on L when its jth bit

is flipped, then the probability of flipping 1, 2, or 3 bits of F (L∗) is 1/4, 1/2 and

1/4 respectively.

To prove this statement, we have to look at the 3 distinct bits of F (L∗)

affected by the jth flipped bit of L∗:

F (L∗)j+1 =
(
(Lj ⊕ 1)⊙ L(j−7)%n

)
⊕ Lj−1

F (L∗)j+2 = (Lj+6 ⊙ Lj+1)⊕ Lj ⊕ 1

F (L∗)j+8 = (Lj+7 ⊙ (Lj ⊕ 1))⊕ Lj+6

First, we calculate the individual probabilities of F (L∗)j+1, F (L∗)j+2 and

F (L∗)j+8 be affected by the jth flipped bit in L. Because F (L∗)j+2 ⊕ F (L)j+2

is always 1, the probability of the (j + 2)th bit of F (L∗) be flipped is 1. The

(j + 1)th bit of F (L∗) flips only if Lj = 1 and L(j−7)%n = 1, or if Lj = 0 and

L(j−7)%n = 1. In other words, when half of the possibilities happens. In similar

way, the (j + 8)th bit of F (L∗) flips only if Lj = 1 and L(j+7)%n = 1, or if Lj = 0 and

L(j+7)%n = 1. Again, when half of the possibilities happens. Then the probability

that no error occurs in the (j + 1)th and (j + 8)th bits of F (L∗) is equal to 1/2

for both cases. Thus, the probability P1 of only one flipped bit occur in F (L∗) is

P1 = 1 ·1/2 ·1/2 = 1/4. The one-bit-flip and one-byte models cannot be performed

without knowing the positions of the flipped bits in the left half input LT−2. To

retrieve these positions, equation (7.5) is necessary. Similarly, for our modification

we cannot perform our attack if we do not know the position of the flipped bit

in the left half input LT−3, and the positions of flipped bits in LT−2 affected by

F
(
L(T−3)∗

)
. In the following discussion, we show how to retrieve the location of

the jth flipped bit in LT−3, and then how to retrieve the locations of the flipped

bits in LT−2.
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7.4.1 Deducing j

Since the jth flipped bit in L(T−3)∗ affects the 3 possible positions a = (j +

1)%n, b = (j + 2)%n and c = (j + 8)%n, the idea for deducing j arises from the

fact that these locations are fixed. In fact, if 3 flipped bits appear in F
(
L(T−3)∗

)
,

then to deduce j it is only necessary to calculate a, and then j must be a − 1.

But because a, b, and c are unknown we need to find them. In the next section,

we explain how to retrieve those affected bits. For now, suppose that these bits

are represented with ones in the ath, bth and cth positions of a n-bit string e′. For

example, suppose the bit at the location j = 2 was flipped resulting in L(T−3)∗ .

Also, suppose this flipped bit affects 3 bits of F
(
L(T−3)∗

)
. Then,

e′ = 000
j
1100000100 · · · 0.

The case with 3-bit flips in e′ does not always happen. In fact, we have shown

that the probability of flipping 1, 2 or 3 bits is 1/4, 1/2, and 1/4 respectively. To

capture all those cases, we have developed Algorithm 2. Here, LSB(·) and MSB(·)

are functions to obtain the least and the most significant bits respectively. The

function wt(·) calculates the Hamming weight, and abs(·) returns the absolute

value.

How to deduce j when e′ has Hamming weight 2 or 3 is shown in steps 4 and

11, respectively. The idea to retrieve j for the case wt(e′) = 3 is to find the two

adjacent flipped bits, i.e., (j + 1)%n and (j + 2)%n, in e′ and then j = LSB (e′)−1.

The idea in the case wt(e′) = 2 is to know whether e′ has two adjacent bits, which

is stablished by functions LSB(·) and MSB(·) in the steps 29 and 13, respectively.

Note that the two-adjacent bit case is the same in step 4 except when the difference

between the least and the most significant bits is equal to n − 1. This case is

considered as two separate bits and the expression to calculate j is showed in

step 27. The case of two separate bits has four sub-cases. The first two happen

when the (j + 1)%n < (j + 8)%n, or (j + 2)%n < (j + 8)%n. In those subcases
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the expressions to retrieve j are shown in steps 15 and 18, respectively. The last

two subcases occur when (j + 1)%n > (j + 8)%n, or (j + 2)%n > (j + 8)%n.

In those subcases the expressions to retrieve j are shown in steps 21 and 24,

respectively.

It is not possible to deduce j when e′ has Hamming weight 1. In the next

section, we will show that this case is not necessary in our attack.

7.4.2 Retrieving LT−2 and KT−1

Suppose that a fault flips the jth bit of the intermediate result LT−3 resulting

in a faulty ciphertext
(
LT ∗

, RT ∗
)
. As we can see in Section 7.4.1, one flipped bit at

the jth location of LT−3 possibly affects 3 distinct bits of F
(
L(T−3)∗

)
. Those bits

are F
(
LT−3

)

(j+1)
, F

(
LT−3

)

(j+2)
, and F

(
LT−3

)

(j+8)
, and again they may affect 3

distinct bits of LT−2 because LT−2 = F
(
LT−3

)
⊕RT−3 ⊕KT−3.

It is possible that the jth flipped bit in LT−3 flips only one bit of LT−2, which

flips only one bit of F
(
L(T−2)∗

)
. Since LT−3 = RT−2, one might think that the

ith affected bit in F
(
L(T−2)∗

)
might coincide with the jth flipped bit in RT−2, and

then no error would occur in the output of the last round of Simon. However, from

the discussion at the beginning of Section 7.4, this case does not happen because

we know that if only one bit is affected in F
(
L(T−2)∗

)
, then the bit location is

i = (j + 2)%n and for all cases of Simon j 6= i 6= (j + 2)%n. If one flipped bit

occurs in LT−3, then the left half input LT will always have at least one flipped

bit.

By (7.5), we know how to find the fault e that flipped the bits in LT−2. Using

Algorithm 2 with input e, it is possible to deduce the jth bit flipped in LT−3 and

consequently in RT−2. Since the bits LT−2
j+1 , L

T−2
j+2 and LT−2

j+8 are inside a byte then

it is possible to apply the random one-byte model presented in Section 7.3.3 to

retrieve information about LT−2 and KT−1. But the formulas of that section have

to be re-written because the jth fault location of RT−2 may coincide with some

fault locations of each 3 possible distinct bits affected by LT−2
j+1 , L

T−2
j+2 or LT−2

j+8 .
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Algorithm 2 Deducing j

Input: bit string e′ of size n
Output: deducing j
1: lsb← LSB (e′)
2: msb← MSB (e′)
3: j ← −1
4: if wt (e′) = 3 then
5: for i = 0 to n− 1 do
6: if e′[i%n] = 1 and e′[(i+ 1)%n] = 1 then
7: j ← i− 1
8: end if
9: end for
10: end if
11: if wt (e′) = 2 then
12: d← abs (lsb−msb)
13: if d > 1 then
14: if d = 7 then
15: j ← (lsb− 1)%n
16: end if
17: if d = 6 then
18: j ← (lsb− 2)%n
19: end if
20: if d = n− 7 + 1 then
21: j ← (msb− 2)%n
22: end if
23: if d = n− 7 then
24: j ← (msb− 1)%n
25: end if
26: if d = n− 1 then
27: j ← n− 2
28: end if
29: else
30: for i = 0 to n− 1 do
31: if e′[i%n] = 1 and e′[(i+ 1)%n] = 1 then
32: j ← i− 1
33: end if
34: end for
35: end if
36: end if
37: return j%n
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These new formulas are in Appendix 8.

Because the output of F on LT−2 is XORed with RT−2, in these new for-

mulas we need to add the difference of R̃T−2
x between RT−2

x and R
(T−2)∗

x where x

corresponds to the fault location of each bit affected by the (j + 1)th, (j + 2)th and

(j + 8)th of LT−2. If only one bit is flipped in the output of F
(
L(T−2)∗

)
, it is at

the location ((j + 2)%n)th. This flipped bit affects 3 bits of
(
RT ⊕RT

)
, namely

(
RT ⊕RT

)

(j+3)%n
,
(
RT ⊕RT

)

(j+4)%n
and

(
RT ⊕RT

)

(j+10)%n
. In this case, note

that the terms R̃T−2
j+3 ,R̃

T−2
j+4 and R̃T−2

j+10 for these formulas, are always zero. This

explains why is not necessary to deduce j when LT−2 has Hamming weight 1.

Table 7.7 shows the bits of LT−2 that are retrievable using those formulas

when LT−2
j+1 , L

T−2
j+2 or LT−2

j+8 were affected. The first column shows the affected bits

by LT−2
j+1 , L

T−2
j+2 or LT−2

j+8 . The second column shows the conditions, because multiple

bits are flipped. The third column shows the deduced values using the truth tables

of the formulas in Appendix 8.

For example, suppose the jth bit in LT−3 was flipped and this bit affects the

(j+2)th bit in LT−2. Also, suppose that the (j+2)th bit flipped in LT−2 affects the

(j + 3)th and (j + 4)-th bits in LT−1. Using the ((j + 3)%n)th bit of
(
RT ⊕RT ∗

)
,

and supposing that the ((j + 1)%n)th bit of LT−2 was not flipped, we can get the

following formula:

(
RT ⊕RT ∗

)

(j+3)%n
=

(

LT−2
(j+2)%n ⊙ LT−2

(j−5)%n

)

⊕
((

LT−2
(j+2)%n ⊕ 1

)

⊙ LT−2
(j−5)%n

)

⊕ R̃T−2
(j+3)%n.

(7.8)

Here, R̃T−2
(j+3)%n =

(
RT−2 ⊕R(T−2)∗

)

(j+3)%n
. After constructing the truth table for

that formula, we can deduce the ((j − 5)%n)th bit of LT−2. This example is

highlighted in gray in Table 7.7.
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Table 7.7: Deducing bits of LT−2.

affected bits by LT−2
j+1 conditions deduced value

(
RT ⊕RT ∗

)

(j+2)%n
LT−2
(j−6)%n

L̃T−2
(j+2)%n = 1 LT−2

(j−5)%n(
RT ⊕RT ∗

)

(j+3)%n
L̃T−2
(j+2)%n = 0

L̃T−2
(j+8)%n = 1(

RT ⊕RT ∗
)

(j+9)%n
L̃T−2
(j+8)%n = 0 LT−2

(j+8)%n

affected bits by LT−2
j+2 conditions deduced value

L̃T−2
(j+1)%n = 1 LT−2

(j−5)%n(
RT ⊕RT ∗

)

(j+3)%n
L̃T−2
(j+1)%n = 0 LT−2

(j−5)%n

(
RT ⊕RT ∗

)

(j+4)%n

L̃T−2
(j+8)%n = 1 LT−2

(j+9)%n(
RT ⊕RT ∗

)

(j+10)%n
L̃T−2
(j+8)%n = 0 LT−2

(j+9)%n

affected bits by LT−2
j+8 conditions deduced value

L̃T−2
(j+1)%n = 1(

RT ⊕RT ∗
)

(j+9)%n
L̃T−2
(j+1)%n = 0 LT−2

(j+1)%n

(
RT ⊕RT ∗

)

(j+10)%n
L̃T−2
(j+2)%n = 1 LT−2

(j+9)%n

L̃T−2
(j+2)%n = 0

(
RT ⊕RT ∗

)

(j+16)%n
LT−2
(j+15)%n

7.4.3 Retrieving LT−3 and KT−2

To retrieve LT−3 and KT−2 we use the one-bit-flip model attack described

in Section 7.3.2 only on the T − 1 rounds as indicated by the dashed rectangle

in Figure 7.2. This is possible now because we know the output
(
LT−1, RT−1

)
of

the round T − 2. We will be calling this output by “correct intermediate text”,

and since KT−1 is known, the elements of this output are LT−1 = RT and RT−1 =

F
(
Y T

)
⊕ LT ⊕ KT−1. When an intermediate error occurs in LT−3, we will be

calling the output of the round T − 2 by “faulty intermediate text”. We could
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construct the “faulty intermediate text” by adding new errors, but instead we

reuse the errors generated for each faulty error injected in LT−3 explained in the

last section, and then we use the idea of the one-bit model at round T−2 to retrieve

LT−3. That is, we repeat the random fault injections in LT−3 but using the “faulty

intermediate text”, which can be calculated in the following way: Y T ∗

= L(T−1)∗

and R(T−1)∗ = RT−1 ⊕ e.

Following the example of the Section 7.4.2, we can retrieve the ((j − 7)%n)th

and ((j + 7)%n)th bits of LT−3. The flipped bits of this example are highlighted

in red, and the retrieved bits are highlighted in green in Figure 7.2.

7.4.4 Retrieving the entire key of Simon 96/96, Simon 128/128 and

other members

The idea of our modification is to use less fault positions compared with

Tupsamudre et al. (2014); Takahashi and Fukunaga (2015). In this context, to

retrieve the entire secret key of Simon 96/96 and Simon 128/128, we need to

obtain 2 round keys based on the key word size m = 2. Then, we use the previous

analysis of sections 7.4.2 and 7.4.3. From the key expansion of Simon, we can

calculate the round keys one after another from the deduced m = 2 round keys.

That is, for k = i− 2 and m = 2 of (7.2) we can obtain

Kk = Kk+2 ⊕
(
Kk+1 >>> 3

)
⊕

(
Kk+1 >>> 4

)
⊕ c⊕ (zj)j−m+2 . (7.9)

Since KT−1 and KT−2 can be found using the method presented in Section

7.4.3, we can feed these values into (7.9) and after T − 2 rounds we can find the

entire key of the Simon 96/96 or the Simon 128/128.

For them = 3 andm = 4, the above explanation can be applied ifm adjacent

round-keys are known and if we chose more rounds for fault injections. That is, the

adversary needs to select one more fault position. For the casem = 3, the adversary

has two options. The first one is injecting faults to the left half input LT−3 and

to retrieve the round-keys KT−1 and KT−2 and the output
(
LT−2, RT−2

)
of round
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T−3. This output can be retrieved with the method presented in Section 7.4.3. To

retrieve KT−3, the adversary must inject faults to the left half input LT−5 and to

retrieve KT−3 and KT−4, the adversary must use the same method and the output
(
LT−2, RT−2

)
, which is known. The second option is: after retrieving

(
LT−2, RT−2

)

the adversary injects faults at round T − 4 using one of the methods presented in

Section 7.3.3. For the case m = 4, the adversary must follow the first option of

the case m = 3.

Figure 7.2: Fault propagation when LT−3 is randomly corrupted in the jth bit.

Gray denotes the faulty intermediate states and the lines the rounds necessary for

retrieve KT−2.

7.4.5 Average Number of Fault Injections

The expected number of KT−1 bits recovered by a single bit-flip in LT−3 is
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2P(1 flip in LT−2) + 4P(2 flips in LT−2)

+ 4P(3 flips in LT−2) = 2
1

4
+ 4

1

2
+ 4

1

4
= 3.5 bits.

In addition, using the same pair of correct and faulty ciphertexts, two bits of KT−2

can be recovered. Thus, one-bit-flip in L(T−3) recovers 3.5 bits of KT−1 and 2 bits

of KT−2 on average. The current bit-flip attack is therefore more efficient than the

bit-flip attack of Tupsamudre et al. (2014), which recovers only 2 bits of KT−1.

The random process to recover KT−1 and KT−2 can be modeled using the

cover time of a random walk. According to Lovász (1993), the average number of

faulty injections needed to recover KT−1 and KT−2 using our one-bit-flip model is

R =
(n− 1)

4

(

Ψ

(
n+ 1

2

)

+ 2 (γ + ln (2))

)

+

(2γ − 1) + nΨ

(
1

2

)

4

(7.10)

where Ψ is a digamma function and γ is the Euler number.

Table 7.8 shows the experimental average number of fault injections to ob-

tain the two round keys KT−1 and KT−2. Specifically, the second column shows

the average of fault injections to obtain KT−1 and KT−2. These values confirm the

theoretical average number of fault injections R for each member of Simon. For

instance, when n = 16, R = 25.43. Also, these values confirm the previous study

of the average number of fault injection presented in Table 7.5, but in our mod-

ification, we retrieve two round keys and not only one. The third column of the

Table 7.8 shows the average number of reused fault injections to retrieve KT−1.

For example, for Simon 32/64 this is approximately 15. Note that the average

number of reused fault injections is always limited by the average number of fault

injection used in the one-bit-flip model. This also confirms that it is possible to

retrieve LT−2 and LT−3 using our modification.
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Table 7.8: Average Number of Fault Encryptions to obtain LT−3 and LT−2.

n

Avg. No. Fault

Injections

LT−3 and LT−2

Avg. No. Fault

Injections reused

LT−2

Time (s)

16 24.81 15.26 10.17

24 42.74 29.70 15.49

32 61.75 44.19 36.84

48 103.42 77.02 57.85

64 147.57 110.81 151.82

7.5 Simulations

To verify the proposed attack and to evaluate the average number of fault

injections, we implement the attack in Python and execute the code on an Intel

Core i5 2.6 GHz processor using Ubuntu 12.04 (64 bits) OS. In the simulation, we

assume that LT−3 is randomly corrupted with one-bit fault. The plaintexts and

the secret keys are randomly chosen.

As mentioned in Section 7.4.5, the first column of Table 7.8 shows the

average number of fault injections to obtain all bits in LT−3 and LT−2 when

n = 16, 24, 32, 48, 64. The third column of Table 7.8 shows the average number of

fault injections that will be reused to obtain only LT−2. The number of samples is

100,000 in Table 7.8. From the results, the average number of fault injections to

obtain all 128 bits of LT−2 and LT−3 is 150.

7.6 Comparison with Related Work

Table 7.9 gives a summary of our method applied on Simon family. We also

show a comparison between this study and previous work Tupsamudre et al. (2014);

Takahashi and Fukunaga (2015). The number of samples is 100,000 in Table 7.9.

The 5th, 6th,7th and 9th columns of Table 7.9 shows the average number of fault

injections required to retrieve the entire secret key for all members of Simon. The
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5th column shows the average number of fault injections using the one-byte model.

The 6th column shows the average number of fault injections using the one-bit-flip

model presented in Tupsamudre et al. (2014). The 7th column shows the average

number of fault injections using the n-bit model. And, the 9th column shows the

average number of fault injections using our one-bit model.

Note that when our modification is compared with the one-bit-flip model in

the cases m = 2 and m = 4, our modification needs in average half of fault injec-

tions and locations to retrieve the entire key. When our modification is compared

with both the one-byte model and n-bit model, our modification needs half of fault

positions. Obviously, for the last two comparisons the average of number of fault

injections is greater.

Different from Tupsamudre et al. (2014), and similar to Takahashi and Fuku-

naga (2015), our attack method achieves the entire key and not only a round key.

Besides, our modification works with all original rounds of each member of the

Simon in contrast with the linear cryptanalysis proposed in Alizadeh, Alkhzaimi,

Aref, Bagheri, and Lauridsen (2014); Alizadeh, Bagheri, Gauravaram, Kumar, and

Sanadhya (2013); Wang, Liu, Varici, Sasaki, Rijmen, and Todo (2014), which works

with the reduced round version of Simon.
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Table 7.9: Comparison of results of DFA on Simon family.

Block
Size

Key
Size

Key
Words(m)

Fault Location
Avg.Tupsamudre et al. (2014)
One-byte

Avg.Tupsamudre et al. (2014)
One-bit-flip

Avg.Takahashi and Fukunaga (2015)
n-bit

Fault
Location

Avg.
One-bit-flip

32 64 4 L27, L28, L29, L30 24 101.72 12.20 L27, L29 50.85
48 72 3 L32, L33, L34 27 130.78 9.91 L32, L33 87.19
48 96 4 L31, L32, L33, L34 36 174.37 13.22 L31, L33 87.19
64 96 3 L38, L39, L40 39 189.44 10.45 L38, L39 126.29
64 128 4 L39, L40, L41, L42 52 252.58 13.93 L39, L41 126.29
96 96 2 L49, L50 42 210.24 7.46 L49 105.12
96 144 3 L50, L51, L52 63 315.36 11.19 L50, L51 210.24
128 128 2 L65, L66 60 299.68 7.82 L65 149.84
128 192 3 L65, L66, L67 90 449.52 11.73 L65, L66 299.68
128 256 4 L67, L68, L69, L70 120 599.36 15.64 L67, L69 299.68
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Chapter 8

Conclusions

This thesis is divided into three parts. In the first part, we have reviewed

the fundamentals of coding theory and three code-based cryptosystems: McEliece,

Niederreiter and the CFS signature. In the second part, we have studied the

following one-time signatures: Lamport, Winternitz, W-OTS+, Merkle, KKS, and

BMS-OTS. In the third part, we have analyzed fundamentals of differential fault

analysis and the Simon family.

Our contribution in the second part is a new code-based one-time signature

inspired in the Lamport scheme. Our proposal is better in certain aspects than

the code-based one-time signatures reviewed in this thesis. In fact, we obtain a

significant gain on the verification key size when we compare our proposal with

KKS and BMS-OTS with random codes. However, if we implement KKS and

BMS-OTS with double-circulant codes, our proposal has larger key and signature

sizes. When we compare our proposal with CFS, ours has smaller key size but

larger signature size. When we compare with Stern, our proposal has smaller

signature size but larger key size. Then, our proposal is suitable depending on the

implementation demand, which can be to optimize the size of the verification key

or the size of the signature.

The one-time signatures reviewed in this thesis use hash functions; our pro-

posal does not. As a future work, we intend check whether it is possible to create

a proof in the standard model for our proposal. Besides, we intend to analyze the
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possibility of reducing the signature key by using seeds.

Our contribution in the third part is an efficient one-bit model for differential

fault analysis on the Simon family. The idea behind this analysis is to insert the

fault in an iteration prior to the one used in Tupsamudre et al. (2014). The strat-

egy is to take advantage of both the one-bit and the one-byte models presented

in Tupsamudre et al. (2014). We have shown how to extract the secret key using

a random one-bit fault model for all parameters of the Simon family. By taking

Simon 128/128 as an example, we extract the entire secret key using 149.84 fault

injections on average. The average number of fault injections needed by our pro-

posal in order to extract the secret key of Simon is greater than in the random

one-byte and n-bit models discussed in this thesis. However, the number of fault

positions needed by our proposal is smaller than the random one-byte and n-bit

models. Our proposal is useful when the adversary pays a high price to inject the

faults in more than one round.

As a future work, we intend to investigate whether it is possible to extend

our ideas to attack other symmetric ciphers using differential fault analysis.
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CAÇÃO DE SÍNDROMES. Dissertação de Mestrado, 2010.

Robert Niebuhr, Pierre-Louis Cayrel, and Johannes Buchmann. Improving the

efficiency of Generalized Birthday Attacks against certain structured cryptosys-

tems. In: WCC 2011 - Workshop on coding and cryptography, pages

163–172, Paris, France, Abril 2011.

H. Niederreiter. Knapsack-type cryptosystems and algebraic coding theory. Prob-

lems of Control and Information Theory, 15(2):159–166, 1986.

Ayoub Otmani and Jean-Pierre Tillich. An Efficient Attack on All Concrete

KKS Proposals. In: Bo-Yin Yang (editor), Post-Quantum Cryptography:

106



4th International Workshop, PQCrypto 2011, Taipei, Taiwan, Novem-

ber 29 – December 2, 2011. Proceedings. pages 98–116, Springer Berlin

Heidelberg, Berlin, Heidelberg, 2011.

David Pointcheval and Jacques Stern. Security Proofs for Signature Schemes.

In: Ueli Maurer (editor), Advances in Cryptology — EUROCRYPT ’96:

International Conference on the Theory and Application of Crypto-

graphic Techniques Saragossa, Spain, May 12–16, 1996 Proceedings.

pages 387–398, Springer Berlin Heidelberg, Berlin, Heidelberg, 1996.

David Pointcheval and Jacques Stern. Security Arguments for Digital Signatures

and Blind Signatures. Journal of Cryptology, 13(3):361–396, Jun 2000.

E. Prange. The use of information sets in decoding cyclic codes. IRE Transac-

tions on Information Theory, 8(5):5–9, September 1962.

R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital

Signatures and Public-key Cryptosystems. Commun. ACM, 21(2):120–126,

Fevereiro 1978. ISSN 0001-0782.

C. P. Schnorr. Efficient Identification and Signatures for Smart Cards.

In: Gilles Brassard (editor), Advances in Cryptology — CRYPTO’ 89

Proceedings. pages 239–252, Springer New York, New York, NY, 1990.

C. E. Shannon. A mathematical theory of communication. The Bell System

Technical Journal, 27(3):379–423, July 1948.

Peter W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete

Logarithms on a Quantum Computer. SIAM J. Comput., 26(5):1484–1509,

Outubro 1997. ISSN 0097-5397.

Vladimir Vasilevich Shurenkov and Vyacheslav Sergeevich Pershenkov. ELEC-

TROMAGNETIC PULSE EFFECTS AND DAMAGE MECHANISM ON THE

SEMICONDUCTOR ELECTRONICS. In: Facta Universitatis, Series:

Electronics and Energetics, volume 29, pages 621–629, 2016.

107



Sergei P. Skorobogatov. Semi-invasive attacks - A new approach to hardware

security analysis, 2005.

J. Stern. A new identification scheme based on syndrome decoding. Lecture

Notes in Computer Science, (973):13–21, 1993.

J. Stern. Can one design a signature scheme based on error-correcting codes?

Lecture Notes in Computer Science, (917):424–426, 1994.

Madhu Sudan. Coding Theory: Tutorial and Survey, 2001.

Michael Szydlo. Merkle Tree Traversal in Log Space and Time. In: Christian

Cachin and JanL. Camenisch (editors), Advances in Cryptology - EURO-

CRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages

541–554. Springer Berlin Heidelberg, 2004.

Junko Takahashi and Toshinori Fukunaga. Fault Analysis on SIMON Family of

Lightweight Block Ciphers. In: Jooyoung Lee and Jongsung Kim (editors), In-

formation Security and Cryptology - ICISC 2014, volume 8949 of Lec-

ture Notes in Computer Science, pages 175–189. Springer International

Publishing, 2015.

H. Tupsamudre, S. Bisht, and D. Mukhopadhyay. Differential Fault Analysis on the

Families of SIMON and SPECK Ciphers. In: Fault Diagnosis and Tolerance

in Cryptography (FDTC), 2014 Workshop on, pages 40–48, Sept 2014.

J. G. J. van Woudenberg, M. F. Witteman, and F. Menarini. Practical Optical

Fault Injection on Secure Microcontrollers. In: 2011 Workshop on Fault

Diagnosis and Tolerance in Cryptography, pages 91–99, Sept 2011.
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Appendix A

Equations of the last two rounds

A flip in LT−2
(j+1)%n affects 3 bits:

(
RT ⊕RT ∗

)

(j+2)%n
=

(

LT−2
(j+1)%n ⊙ LT−2

(j−6)%n

)

⊕
((

LT−2
(j+1)%n ⊕ 1

)

⊙ LT−2
(j−6)%n

)

⊕ R̃T−2
(j+2)%n

(
RT ⊕RT ∗

)

(j+3)%n
=







(

LT−2
(j+2)%n ⊙ LT−2

(j−5)%n

)

⊕
((

LT−2
(j+2)%n ⊕ 1

)

⊙ LT−2
(j−5)%n

)

⊕ 1⊕ R̃T−2
(j+3)%n

if L(j+2)%n was affected

1⊕ R̃T−2
(j+3)%n

if otherwise

(
RT ⊕RT ∗

)

(j+9)%n
=







(

LT−2
(j+8)%n ⊙ LT−2

(j+1)%n

)

⊕
((

LT−2
(j+8)%n ⊕ 1

)

⊙
(

LT−2
(j+1)%n ⊕ 1

))

⊕ R̃T−2
(j+9)%n

if L(j+8)%n was affected

(

LT−2
(j+8)%n ⊙ LT−2

(j+1)%n

)

⊕
((

LT−2
(j+8)%n

)

⊙
(

LT−2
(j+1)%n ⊕ 1

))

⊕ R̃T−2
(j+9)%n

if otherwise
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A flip in LT−2
(j+2)%n affects 3 bits:

(
RT ⊕RT ∗

)

(j+3)%n
=







(

LT−2
(j+2)%n ⊙ LT−2

(j−5)%n

)

⊕
((

LT−2
(j+2)%n ⊕ 1

)

⊙ LT−2
(j−5)%n

)

⊕ 1⊕ R̃T−2
(j+3)%n

if L(j+1)%n was affected

(

LT−2
(j+2)%n ⊙ LT−2

(j−5)%n

)

⊕
((

LT−2
(j+2)%n ⊕ 1

)

⊙ LT−2
(j−5)%n

)

⊕ R̃T−2
(j+3)%n

if otherwise

(
RT ⊕RT ∗

)

(j+4)%n
= LT−2

(j+2)%n ⊕ (LT−2
(j+2)%n ⊕ 1)⊕ R̃T−2

(j+4)%n = 1⊕ ẼT−2
(j+4)%n

(
RT ⊕RT ∗

)

(j+10)%n
=







(

LT−2
(j+9)%n ⊙ LT−2

(j+2)%n

)

⊕
(

LT−2
(j+9)%n ⊙

(

LT−2
(j+2)%n ⊕ 1

))

⊕ 1⊕ R̃T−2
(j+10)%n

if L(j+8)%n was affected

(

LT−2
(j+9)%n ⊙ LT−2

(j+2)%n

)

⊕
(

LT−2
(j+9)%n ⊙

(

LT−2
(j+2)%n ⊕ 1

))

⊕ R̃T−2
(j+10)%n

if otherwise

A flip in LT−2
(j+8)%n affects 3 bits:

(
RT ⊕RT ∗

)

(j+9)%n
=







¬
(

LT−2
(j+8)%n ⊕ LT−2

(j+1)%n

)

⊕ R̃T−2
(j+9)%n

if L(j+1)%n was affected

(

LT−2
(j+8)%n ⊙ LT−2

(j+1)%n

)

⊕
(

LT−2
(j+1)%n ⊙

(

LT−2
(j+8)%n ⊕ 1

))

⊕ R̃T−2
(j+9)%n

if otherwise

(
RT ⊕RT ∗

)

(j+10)%n
=







(

LT−2
(j+9)%n ⊙ LT−2

(j+2)%n

)

⊕
(

LT−2
(j+9)%n ⊙

(

LT−2
(j+2)%n ⊕ 1

))

⊕ R̃T−2
(j+10)%n

if L(j+2)%n was affected

1

if otherwise

(
RT ⊕RT ∗

)

(j+16)%n
=

(

LT−2
(j+15)%n ⊙ LT−2

(j+8)%n

)

⊕
(

LT−2
(j+15)%n ⊙

(

LT−2
(j+8)%n ⊕ 1

))

⊕ R̃T−2
(j+16)%n
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