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We analyze the decoherence in quantum walks in two-dimensional lattices generated by broken-
link-type noise. In this type of decoherence, the links of the lattice are randomly broken with some
given constant probability. We obtain the evolution equation for a quantum walker moving on 2-D
lattices subject to this noise, and we point out how to generalize for lattices in more dimensions.
In the non-symmetric case, when the probability to break links in one direction is different from
the probability in the perpendicular direction, we have obtained a non-trivial result. If one fixes
the link-breaking probability in one direction, and gradually increases the probability in the other
direction from 0 to 1, the decoherence initially increases until it reaches a maximum value, and
then it decreases. This means that, in some cases, one can increase the noise level and still obtain
more coherence. Physically, this can be explained as a transition from a decoherent 2-D walk to a
coherent 1-D walk.

PACS numbers: 03.67.Lx, 03.65.Yz, 05.40.Fb, 03.67.Mn

I. INTRODUCTION

In a seminal paper, Aharanov, Davidovich, and Zagury
[1] introduced the discrete-time quantum walk model,
which has new features when compared to the classi-
cal random walk. In special, the quantum walk spreads
quadratically faster then the classical one. An alternative
model was proposed by Farhi and Gutmann [2], which
is called continuous-time quantum walk. Many authors
have used these models to propose new quantum algo-
rithms based on quantum walks [2, 3].

In this paper we focus our attention on quantum walks
in two-dimensional lattices. Ref. [4] was one of the first
to analyze 2-D quantum walks. The authors concluded
that the entanglement has a negative influence on the
rate of spread. Tregenna et al. [5] pointed out that this
conclusion is not true in general, because it depends on
the initial condition. They analyzed the full range of
possible coin initial states of quantum walks starting at
the origin and concluded that there are 10 types of non-
equivalent coins. The Hadamard, Fourier, and Grover
coins are of different types, the Grover coin being the
one that produces the maximum spreading rate.

Any attempt to implement quantum walks on some
physical setting faces decoherence problems. It is crucial
to understand what kind of quantum walks are more re-
sistant to decoherence. In Ref. [6] a careful analysis using
non-unitary quantum operations on 1-D lattices, cycles,
and hypercubes has been performed. Ref. [4] briefly an-
alyzed decoherence effects on 2-D lattices.

The decoherence produced by broken links in 1-D lat-
tices was analyzed in Ref. [7]. Broken-link-type decoher-
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ence is a unitary noise produced by random disruption
of the links that connects neighboring sites of the lattice.
This kind of noise may be relevant in implementations
based on Ising spin-1/2 chains in solid-state substrates
[8]. In this paper we generalize the analysis of Ref. [7] and
obtain the generic evolution equation for lattices of any
dimension that may be subject to this broken-link-type
decoherence. Such an equation is important when ana-
lyzing quantum walks subject to many types of boundary
conditions.

The main goal of the present work is to analyze the
decoherence in quantum walks in 2-D lattices. We stress
that some results obtained in this case cannot be ob-
tained in the 1-D quantum walk case. More precisely, it
is known that quantum coherence is disturbed by the in-
fluence of random events, which are usually modeled by
some non-unitary disturbances, such as random measure-
ments [6], or unitary disturbances, such as broken links
[7]. These events are characterized by a rate defined in
terms of a probability parameter p. The decoherence
time goes as 1/p, meaning that for t � 1/p the classical
behaviour emerges. Equivalently, we can say that if one
increases p, the classical behavior emerges sooner. In this
paper we show that this general analysis does not apply
straightforwardly for non-symmetric 2-D walks. We will
show that when we consider the case in which the prob-
ability of breaking links in one direction is different from
the probability in the other direction, it is possible to
increase the correlation time through an increase of one
of these probabilities.

We have organized the paper as follows. In Section 2
we review the effect of broken links on quantum walks in
1-D lattices. The main results of quantum walks in 2-D
lattices are reviewed in Section 3. In Section 4 we derive
the evolution equation for 2-D quantum walks with bro-
ken links. In Section 5 we present a detailed numerical
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analysis of the decoherence produced by broken links us-
ing Hadamard, Fourier, and Grover coins, and in the last
section we present our conclusions.

II. BROKEN LINKS IN 1-D QUANTUM WALKS

A coined quantum walk on an infinite line has a Hilbert
space H2 ⊗ H∞, where H2 is the coin space and H∞

is the line position space. The coin consists of one
qubit with basis {|j〉, j ∈ {0, 1}}. The basis for H∞ is
{|m〉,m integer}. The generic state of the discrete quan-
tum walker on the infinite line is

|ψ(t)〉 =

1
∑

j=0

∞
∑

m=−∞

Aj; m(t)|j〉|m〉. (1)

The evolution operator for one step of the walk is U =
S ◦ (C ⊗ I) where

C =

1
∑

j,k=0

Cjk |j〉〈k| (2)

is the coin operator, I is the 2 × 2 identity matrix, and
S is the shift operator given by

S|j〉|m〉 = |j〉
∣

∣m+ (−1)j
〉

. (3)

As seen from this last equation, if j = 0 the walker moves
one step to the right and if j = 1 the walker moves to
the left, leaving the coin state unchanged. Applying the
evolution operator on state (1) we obtain

Aj; m(t+ 1) =
1

∑

k=0

CjkAk; m−(−1)j (t). (4)

Let us now analyze the evolution of the quantum walker
in the case that, at time t, site m has one or both of the
links connecting it to its neighboring sites broken [7]. We
define the function

link(j; m) =

{

(−1)j , if link to site m+ (−1)j is closed,

0, if link to site m+ (−1)j is open,

(5)
where j is either 0 or 1 for the link either to the right
or left of site m, respectively. Fig. 1 displays all possible
cases. Note that if link(j; m) = 0 then link(1 − j; m +
(−1)j) = 0.

To modify Eq. (4) in order to include the possibility
of broken links, we use the following argument. Suppose
that the link to the right of sitem is broken, the argument
being similar in the other direction. The probability flux
from site m to site m + 1 must then be diverted to site
m. To calculate this flux we focus our attention on site
m + 1 and calculate A0; m+1(t + 1) in terms of Aj; m(t)
assuming that the link is not broken. This result must be
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FIG. 1: Possible cases of broken links at site m and the cor-
responding values of link(j; m).

assigned to A1; m(t+1). The formula for A0; m(t+1) does
not change. Therefore, site m (instead of m + 1) must
appear in both sides of the equation for A1; m(t + 1).
Note also that there is a change in the line of the coin
operator because A1; m(t+ 1) uses the line j = 0 of Cjk .
The argument does not apply to A1; m+1(t+1) because it
receives the flux from site m+2 (see [7] for more details).
The above argument shows that the indices j and m −
(−1)j on the right hand side of Eq. (4) must be modified
yielding

A1−j; m(t+1) =
1

∑

k=0

Cj+link(j; m),kAk; m+link(j; m)(t). (6)

The authors of Ref. [7] have analyzed the effects that
broken links produce on the quantum walk on the line.
They assumed that links between neighboring sites are
randomly broken with probability p per unit of time, and
concluded that the evolution becomes decoherent after a
characteristic time that scales as 1/p.

III. QUANTUM WALKS IN A 2-D LATTICE

A coined quantum walk on an infinite two-dimensional
lattice has a Hilbert space H4⊗H∞, where H4 is the coin
space and H∞ is the lattice space. The coin consists of
two qubits with basis {|j, k〉, j, k ∈ {0, 1}}. We consider
that the links are either along the main or along the
secondary diagonals of the lattice. Thus, the basis for
H∞ is {|m,n〉,m, n integers} such that m+ n is even.

The generic state of the quantum walker is

|ψ(t)〉 =
1

∑

j,k=0

∞
∑

m,n=−∞

Aj,k; m,n(t)|j, k〉|m,n〉. (7)

The evolution operator for the one step of the walk is
U = S ◦ (C ⊗ I4), where

C =

1
∑

j,k=0

1
∑

j′,k′=0

Cj,k; j′,k′ |j, k〉〈j′, k′| (8)

is the coin operator, I4 is the 4 × 4 identity matrix, and
S is the shift operator given by

S|j, k〉|m,n〉 = |j, k〉
∣

∣m+ (−1)j , n+ (−1)k
〉

. (9)
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The walker moves along the main diagonal if the value
of the coin is |0, 0〉 or |1, 1〉; and along the secondary
diagonal if the value of the coin is |0, 1〉 or |1, 0〉. Note
that S does not entangle the first qubit of the coin with
direction n nor the second qubit with direction m. Only
the combined action of the coin and shift operators can
produce such entanglement.
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FIG. 2: The probability distribution of the Hadamard walk
after 100 iterations using the initial state (13).

Applying the evolution operator on state (7) we obtain

Aj,k; m,n(t+ 1) =
1

∑

j′,k′=0

Cj,k; j′,k′Aj′ ,k′; m−(−1)j ,n−(−1)k(t). (10)

The probability distribution for the walker at position
|m,n〉 at time t is

Pm,n(t) =

1
∑

j,k=0

|Aj,k; m,n(t)|. (11)

Fig. 2 shows the probability distribution for the

Hadamard coin (H4 = H⊗H), whereH = 1√
2

(

1 1
1 −1

)

i.e.

H4 =
1

2







1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1






, (12)

after 100 steps, taking as initial state

|ψ(0)〉 =
1

2
(|0〉 − i|1〉)(|0〉 + i|1〉)|0, 0〉, (13)

which produces a symmetric walk. The Hadamard coin
does not entangle the coin-qubits and the shift operator
does not entangle the two directions. The result is the
Hadamard walk in the 2-D lattice.
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FIG. 3: The probability distribution of the Fourier walk after 100

iterations using the initial state (15).

Fig. 3 shows the probability distribution for the Fourier
coin

F4 =
1

2







1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i






, (14)

after 100 steps, taking the initial state

|ψ(0)〉 =
1

2

(

|00〉+
1 − i√

2
|01〉 + |10〉 − 1 − i√

2
|11〉

)

|0, 0〉.
(15)
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Note that the density plot reveals details that are hardly
seen in the 3-D plot. The walk is symmetric in the follow-
ing sense: if we take any line passing through the origin,
the distribution is the same in both directions. This is
equivalent to saying that the plot is invariant under a
rotation of π. The initial state (15) was chosen to guar-
antee a maximum of spreading when the walk starts at
the origin [5]. This is the most interesting situation in
decoherence analysis.

In Fig. 4 we show the probability distribution for the
Grover coin

G4 =
1

2







−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1






, (16)

after 100 steps, taking the initial state

|ψ(0)〉 =
1

2
(|0〉 − |1〉)(|0〉 − |1〉)|0, 0〉. (17)

The density plot illustrates the remarkable properties of
the Grover coin for the initial state (17). The walk is
highly symmetric, since it is apparently invariant under a
rotation of π/2. The walk is delocalized, having a rather
empty central region of about 1/3 of the reachable radius
which has an almost zero probability distribution.
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FIG. 4: The probability distribution of the Grover walk after 100

iterations using the initial state (17).

Other relevant references regarding 2-D and higher di-
mensional quantum walks are [9, 10].

IV. BROKEN LINKS IN 2-D QUANTUM

WALKS

The argument used in Sec. II to derive the equa-
tion for the evolution of the amplitudes (6) in the one-
dimensional case can be easily generalized to the case of
two-dimensional walks with broken links. Two functions
are now required to specify the broken links, one for each
direction,

link1(j, k; m,n) =











(−1)j , if link to site m+ (−1)j ,

n+ (−1)k is closed,

0, if the link is open,

(18)

link2(j, k; m,n) =











(−1)k, if link to site m+ (−1)j ,

n+ (−1)k is closed,

0, if the link is open,

(19)
where j, k ∈ {0, 1}. The equation that generalizes (10) is

A1−j,1−k; m,n(t+ 1) =
1

∑

j′, k′=0

Cj+link1(j,k; m,n),k+link2(j,k; m,n); j′,k′

Aj′,k′;m+link1(j,k; m,n),n+link2(j,k; m,n)(t) (20)

We easily see that the above equation reduces to (10)
if there are no broken links. When implementing this
equation, one must impose that link1(1 − j, 1 − k; m +
(−1)j , n + (−1)k) = 0 if link1(j, k; m,n) = 0, and simi-
larly with link2.

The evolution equation for quantum walks in n-
dimensional lattices is a generalization of Eqs. (18), (19),
and (20). In this case one needs to use n link functions
defined analogously to Eqs. (18) and (19). Eq. (20) must
be modified accordingly, adding each link function to its
corresponding index. With these equations in hand, it
is possible not only to analyze broken-link-type decoher-
ences in n-dimensional lattices, but also to analyze the
decoherence-free walks in lattices with reflecting bound-
ary conditions. In fact, one can choose a variety of lattice
topologies by permanently breaking the relevant links.

V. RESULTS AND DISCUSSION

Now we analyze numerically the decoherence effects of
broken links in the 2-D walk described in the previous
sections. We give more attention to results that differ
from those known in the 1-D case.

Fig. 5(a) shows the decoherence effects in the Grover
walk when t ≈ 1/p, where p is the probability of breaking
the links, in the case p = 0.01, t = 100. Both quantum
and classical behaviors are present, but the classical one
starts to take over the quantum behaviour. Compare
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(a) Probability distribution for p = 0.01. The
classical behaviour starts to dominate over the

quantum behaviour at t ≈ 1/p.
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(b) Probability distribution for p = 0.1. The classical
behaviour has emerged since t � 1/p.

FIG. 5: Decoherence of the Grover walk at t = 100 with initial
state (17).

to Fig. 4, for p = 0, which is delocalized at the origin.
The standard deviation of the probability distribution in
Fig. 5(a) is still larger than in the classical case. The
situation changes dramatically when t � 1/p, as illus-
trated in Fig. 5(b) for p = 0.1 and t = 100. In this case
the classical behaviour is fully developed. It is easy to
show that the standard deviation grows, in this case, as√
t.
The study of the transition from the quantum to the

classical behavior is made easier by plotting the evolu-
tion of the standard deviation (σ). Fig. 6 shows σ for
the Grover walk for many values of p in a log-log scale.
The continuous lines represent the quantum and classi-
cal standard deviations when there are no broken links
(p = 0). The quantum curve for p = 0 has inclination
1 for t > 2. When p > 0, all curves have a similar be-
havior: they have a slope 1 for t � td, which gradually
decreases to 1/2 for t � td, where td is the decoherence
time, which is usually approximated by 1/p, but which
we discuss below.

The decoherence time can be estimated in the follow-
ing way. For small values of the evolution time t, the
number of broken links inside the area accessible to the
walker is still small. This number increases with time, as
the boundary of the accessible region expands. As the

 1
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σ

t
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p=0.10 
p=0.25 
p=0.50 

classical

FIG. 6: Evolution of the standard deviation of the Grover
walk with broken links for an initial state (17), in the cases p =
0.01, 0.1, 0.25, and 0.5. The continuous lines are the quantum
and classical walks with no broken links.

Hadamard walk spans an area 2t2 at time t, the cumula-
tive number of broken links after a time T is

T
∑

t=0

2 t2p =
1

3
T (T + 1) (2T + 1) p.

It is natural to approximate td by the time at which the
cumulative number of broken links equals the total num-
ber of links in the accessible area of the walker, which is
2T 2. Then we get td ≈ 3/p, for p� 1.

There are several novel results in the case of 2-D walks
when compared to 1-D quantum walks. First of all,
while all 1-D walks starting at the origin can be obtained
from the Hadamard walk [11–13], 2-D walks have many
non-equivalent coins. In fact, the standard deviation of
the Hadamard, Fourier, and Grover walks are different,
when the walker starts at the origin with initial states
(13), (15), and (17), respectively, which give the max-
imum spreading rates for each case. We still have, in
all cases, σ = αt, but the values of α vary from coin to
coin. Numerically we find, in the case p = 0, αH = 0.77,
αF = 0.80, and αG = 0.85, respectively. We notice that
the Grover walk leads to the largest diffusion rate among
all the coins considered [5].

The diffusion coefficient is defined by

D =
1

2
lim

t→∞

∂σ2

∂t
. (21)

Figs. 7(a) and 7(b) show that the coins have different
sensitivity to decoherence. When p = 0, D = ∞ since
σ2 has a quadratic increase. When p > 0, D is finite
as, when t � td, σ

2 has a linear increase. The diffusion
coefficient D measures half of the inclination of the as-
ymptotic line in a σ2

vs. t log-log plot. From Fig. 7(b)
we conclude that the Hadamard coin leads to a quantum
walk more resistant to decoherence than the Grover coin,
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and also that Grover is more resistant than Fourier. The
difference between the Fourier and Grover walkers with
broken links is small when compared to the Hadamard
case. When p is very close to 1 the coins are similar.
This is because, in this case, the noise is so intense that
the diffusion rate is even below that for a classical ran-
dom walk. Certainly this case has little, if any, practical
interest. We remark that the preceding analysis uses the
initial states that produce the largest diffusion rate for
each coin, and not the same initial state for all cases.
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(a) D as function of p.
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FIG. 7: The diffusion coefficient D for quantum walkers mov-
ing on a lattice with a broken link probability parameter p,
as function of the coin operator employed.

From the plot of Fig. 7(a), it is also possible to esti-
mate the noise level for which the diffusion rate of the
walk equals the classical diffusion rate with no broken
links, i.e. D = 1. We found the approximate val-
ues: pH = 0.41 (Hadamard), pF = 0.34 (Fourier), and
pG = 0.25 (Grover). For values of p above pH , pG, pG,
the frequency of broken links is so high that the walker
spreads more slowly than a classical random walk with no
broken links. Note also that pH is very close to the cor-
responding value for the 1-D walk found in ref. [7]. This
was expected since a 2-D Hadamard walk corresponds
to two independent 1-D Hadamard walks. This analysis
does not mean that for p greater than the above values,
there are no quantum correlations. Such correlations per-
sists as long as t < td for all values of p, although one
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FIG. 8: Diffusion coefficient as function of p1 for p0 = 0 (no
broken links along parallels to the main diagonal). The mini-
mum value of the diffusion coefficient (maximum decoherence)
is obtained, in all cases, for a value of p1 < 1. See text for
additional details.

should also note that the decoherence time td becomes
quite small when p approaches 1.

Thus far we have described the decoherence produced
by broken links with equal probabilities for both direc-
tions. It will be interesting to study the non-symmetric
case, this is, when the probability to break links along
parallels to the main diagonal (p0) is different from the
probability in the perpendicular direction (p1). One
would expect that the decoherence always increases when
either of the probability parameters associated with bro-
ken links along the two diagonals increases. However,
in the non-symmetric case, a quite remarkable situation
takes place. Let us consider the diffusion coefficient in
the case where there are no broken links along the main
diagonal direction, p0 = 0, as function of p1. This is
illustrated, for the three different coins considered, in
Fig. 8. We note that D has a minimum value for, ap-
proximately, p1 = 0.72 (Hadamard), p1 = 0.47 (Fourier),
and p1 = 0.35 (Grover), and thus it increases when p1

approaches 1. This result should be compared to that of
Fig. 7 for p0 = p1, in which case the diffusion coefficient
goes to 0 as p0 and p1 go simultaneously to 1.

The Figs. 9 and 10 help understand what is physically
taking place. The case when p0 = 0 and p1 ≈ 1 is similar
to a 1-D quantum walker that has a probability 1/2 to
move along the main diagonal (in either direction) and
1/2 to keep still. This walk is described by a shift oper-
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FIG. 9: Non-symmetric Grover walk for p0 = 0 and p1 = 0.99,
at time t = 100, for the initial state (17). The large value of
p1 forces the walker to stay very close to the main diagonal.

ator of the form

S = |00〉〈00| ⊗
∞
∑

m=−∞

|m+ 1〉〈m|+

|01〉〈01| ⊗
∞
∑

m=−∞

|m〉〈m|+

|10〉〈10| ⊗
∞
∑

m=−∞

|m〉〈m|+

|11〉〈11| ⊗
∞
∑

m=−∞

|m− 1〉〈m|.

(22)

This variation of the 1-D quantum walker was studied
in Ref. [14]. The probability distribution for the walk
using the shift operator (22) and the Grover coin (16) is
depicted in Fig. 11. Note that the qualitative behavior
of this walker is very similar to the one shown in the left
panel of Fig. 9. Analyses performed with Hadamard and
Fourier coins have resulted in similar matches.

For p1 ≈ 0.35, the walker partially spreads along the
secondary diagonal direction while losing coherence, as
it can observed in Fig. 10. The relation td ≈ 1/p does
not apply in the non-symmetric case since we have two
probabilities to consider. Fig. 10 shows that the decoher-
ence time along the secondary diagonal is smaller than
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FIG. 10: Similar to Fig. 9 for p1 = 0.35. The walker par-
tially spreads more along the secondary diagonal, losing its
coherence faster than in the previous case.
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FIG. 11: Probability distribution of the 1-D quantum walk
with shift operator (22) using Grover coin and initial condi-
tion |−〉|−〉|0〉, where |−〉 = (|0〉 − |1〉)/2.

along the main diagonal. Correlations still persist along
the main, but are completely lost along the secondary
diagonal. As a first approximation, one could associate

a decoherence time to each direction: t
(0)
d ≈ 1/p0 and

t
(1)
d ≈ 1/p1.

VI. CONCLUSIONS

We have analyzed the decoherence produced by ran-
domly breaking links in a 2-D lattice. We have used the
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Hadamard, Fourier, and Grover coins, taking as initial
condition the one that leads to a maximum rate of spread.
We have found that the Hadamard walk is more resistant
to this type of decoherences than the Grover walk, which,
in turn, is more resistant than the Fourier walk. We have
also obtained the evolution equation for quantum walks
in n-dimensional lattices with broken links.

These extensions to higher dimensional lattices open
the way for several studies. We have seen how the differ-
ence in breaking probability along two orthogonal direc-
tions lead to a transition first from a coherent 2-D walk
to a decoherent 2-D walk, and then to a coherent 1-D
one. Such studies may be easily carried over to three
dimensions.

The treatment presented in this work allows also to
study the evolution of quantum walkers on lattice re-
gions of arbitrary shape, through the procedure of per-

manently breaking the appropriate links in order to de-
fine its boundary. A possible application of this method
is to study the transmission of quantum walkers through
open billiards [15], or in a region where the correspond-
ing classical motion would be chaotic. Other applications
that could be considered are the problem of quantum
percolation, and the propagation of the walkers in inho-
mogeneous regions, such as the interface of two regions
with different conductivities. Work along these lines is
in progress.
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