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Abstract
The discovery of the quantum mechanics changed the physics world. Newton’s laws of
motion cannot be applied to very small physical systems. The quantum mechanics has
many applications, one of them is the quantum computation, which was discovered in the
80’s and has steadily grown from that time to nowadays. One powerful tool of quantum
computation is the quantum walk, which is the quantum version of random walk. In this
work, we study some quantum walk models. The coined model was the first one to be
proposed, this model has a quadratic larger position standard deviation compared to the
one of the random walk. The second model is the staggered quantum walk, which was
proposed recently. This model makes a partition of the vertices of the graph into cliques,
and a partition is called tessellation, establishing a new problem of graph theory, related
to the problem of graph coloring. We study 2-tessellable graphs and prove a new theorem
in graph theory. An expression of the standard deviation of a staggered quantum walk
on the line-of-diamond graph is obtained using a special basis, which is derived from the
staggered Fourier transform.

Keywords: staggered quantum walk. graph tessellation. standard deviation.



Resumo
A descoberta da mecânica quântica mudou o mundo da física. As leis de Newton do
movimento não podem ser utilizadas para sistemas físicos muito pequenos. A mecânica
quântica tem muitas aplicações, uma delas é a computação quântica, que foi descoberta na
decada de 80 e tem crescido constantemente desde aquela época até hoje em dia. Uma forte
ferramenta da computação quântica é a caminhada quântica, que é a versão quântica da
caminhada aleatória. Neste trabalho, estudamos alguns modelos de caminhadas quânticas.
O modelo com moeda foi o primeiro modelo proposto, este modelo possui um desvio padrão
da posição quadraticamente maior em relação ao da caminhada aleatória. O segundo
modelo é a caminhada quântica escalonada, proposto recentemente. Este modelo particiona
os vértices do grafo em cliques, tal partição é chamada de tesselação, estabelecendo um novo
problema em teoria dos grafos, relacionado ao problema de coloração de grafos. Estudamos
grafos 2-tesseláveis e provamos um novo teorema em teoria dos grafos. Uma expressão
do desvio padrão de uma caminhada quântica escalonada no grafo linha-de-diamantes é
obtida usando uma base especial, que deriva da transformada de Fourier escalonada.

Palavras-chave: caminhada quântica escalonada. tesselação de grafos. desvio padrão.
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1 Introduction

Suppose that a particle in a flat smooth surface is pushed by a force with random
magnitude and direction at every second. The Brownian motion can be described by
random forces and was discovered by Robert Brown in 1827. He noted that the movement
of a pollen in a water surface can be described by random forces pushing the pollen. Brown
observed that inorganic particles exhibited this same behavior. With a microscope, he
observed that the particle receives collisions with smaller particles of the fluid generating
the Brownian movement.

The Brownian movement can be mathematical modeled by random walks, which
was formulated for the first time by Pearson in 1905. We can imagine a particle walking
randomly on a line, in each step it has a probability to go rightward or leftward. The
description of the walk of the particle cannot be done in a deterministic way, only in a
probabilistic way. Random walks can be applied in physics, psychology, economy and
computer science

One way of simulating a random walk on a line is similar to the Mach-Zehnder
modulator experiment (VIEIRA, 2014). We position 6 beam splitters1 and 4 photometers2

as Figure 1 shows. A light beam is launched in the first beam splitter such that the
light passes through all beam splitters and is measured at the end by the photometers.
From top to bottom we have that the intensity of light is divided with 1/8, 3/8, 3/8
and 1/8. Changing this experiment to quantum conditions (photon emissions), it arises a
difference on the measurements of the photometers. It can be verified experimentally that
the probability of the photon be detected in the photometers, from top to bottom, is 1/8,
1/8, 5/8 and 1/8. This difference between the classical and quantum world is generated by
the quantum interference.

The evolution of computers makes use of smaller and smaller circuits as time
passes. In the early 80’s, some researchers asked themselves what would happen when the
circuits became so small that the physics involved in the computer circuits would pass
from classical mechanics to quantum mechanics. This research resulted in the development
of the quantum computation, which possesses as its starting point the article of Deutsch
(DEUTSCH, 1985). From 1985 to today the interest in quantum computation increased
significantly. Two papers collaborated enormously for this interest. First, Shor (SHOR,
1994) presented a quantum algorithm for integer factorization, which is exponentially
faster than the known classical algorithms. Second, Grover (GROVER, 1996) presented a
search algorithm with quadratic gain. These two works are important because they used,
1 Half the light goes straight through and half is mirrored.
2 Photometer is an instrument that measures light intensity.
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Figure 1 – An experiment that simulate the random walk on a line. The yellow lines
represent a light beam, the blue rectangles represent beam splitters and the
pieces of circle represent the photometers.

for the first time, two techniques very important in quantum computation, the quantum
Fourier transform and amplitude amplification, respectively.

Quantum walks is a third important technique in quantum algorithms. Quantum
walks, as defined for the first time by Aharanov et al. (AHARONOV; DAVIDOVICH;
ZAGURY, 1993), which use an additional coin space and discrete time. A continuous
time version was introduced by Farhi et al. (FARHI; GUTMANN, 1997). Quantum walks
gained importance due to many works. One is the work of Childs et al. (CHILDS et al.,
2003). He used quantum walks on the graph that is composed of two trees with height n
connecting their leafs randomly. He showed that the quantum walk goes from a root to
the other with an exponential speedup compared to the classical random walk. Childs also
proved (CHILDS, 2009) that quantum walks are universal for quantum computation, that
is, any quantum algorithm can be described as a random walk on a graph.

Despite the success of the coined quantum walks, other models without the use
of a coin were proposed. Szegedy (SZEGEDY, 2004) proposed a model of quantum
walk on a bipartite graph that is generated by a given graph. More recently Portugal
et al. (PORTUGAL et al., 2016) proposed another model that generalizes the Szegedy
model, the staggered model. Such model received an extension (PORTUGAL; OLIVEIRA;
MOQADAM, 2017), using Hamiltonians. The idea of the staggered model is to associate
a set of cliques of the graph with an operator that preserves the structure of the graph.
From this model arises a new problem in graph theory, the graph tessellation (ABREU et
al., 2017).
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1.1 Contributions and organization
In chapter 2 we start with an introductory review of graph theory. After that, we

study the graph tessellation and characterize the 2-tessellable graphs. In this chapter, we
obtain a new theorem 2.2.5, which describes an algorithm new in the literature, as far as we
know. In chapter 3 we introduce the coined walks (classical and quantum) and we compare
their standard deviation, which is important because it is equal to the expected distance
of the walker to its initial position. In chapter 4 we introduce the staggered quantum
walk and study it on a line of diamonds. Moreover, we obtain the standard deviation for
different Hamiltonians and use it to determine the Hamiltonian that gives to us the largest
standard deviation. We confirm our analytical results with numerical simulations. We
have submited two complete works to CNMAC 2018. One where we present the standard
deviation of the staggered quantum walk on a line of diamonds, and the other where we
characterize the triangle-free graphs that are 3-tessellable.
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2 Graphs

In this chapter, we introduce some concepts important to us in graph theory. The
first is the intersection graph, which is a graph generated from a family of sets. The second
is the concept of tessellation. A tessellation of a graph is a partition of its vertices into
cliques. A tessellation covers some edges of the graph, not necessarily all edges. In this
case, we need more them one tessellation in order to define a tessellation cover. At the end
of this chapter, we characterize the graphs for which 2 tessellations are enough to cover all
edges. In the book (CHARTRAND, 1984) you can find more about graph theory.

2.1 Introduction to graphs
A simple graph (or graph) G(V,E) is a nonempty set V of vertices and a set E

of edges where each edge is a set of two vertices. We say that an edge links two vertices.
We will denote the vertex set and edge set of a graph G by V (G) and E(G), respectively.
We also denote the edge that links vertices u and v by uv. A first example of a graph
is G, where V (G) = {v1, v2, v3, v4} and E(G) = {v1v2, v2v3, v2v4, v3v4}. We can make a
representation of a graph by a diagram (this representation is not unique). In Figure 2 a
diagram representation of the graph G is shown, the horizontal edge links the vertices v3

and v4. In this manuscript we will refer the diagram representation simply as graph.

Figure 2 – Graph G.

If uv ∈ E(G) then u and v are adjacent vertices. In this case, we say u is adjacent
to v (or u is a neighbor of v). Note that u is adjacent to v if and only if v is adjacent to u.
For example, in the graph G of Figure 2 the vertices v1 and v2 are adjacent. If uv /∈ E(G)
then u and v are nonadjacent vertices. Two edges are adjacent if they share a common
vertex. Again in G we have that v2v3 and v2v4 are adjacent.

Let G be a graph and v ∈ V (G) be a vertex. The degree of vertex v is the number
of edges in E(G) that contains v. We denote the degree of a vertex v by degG(v). It is
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equal the number of neighbors of v. A vertex of a graph is a leaf if its degree is 1. In
Figure 2 we have degG(v1) = 1, degG(v2) = 3, degG(v3) = 2 and degG(v4) = 2.

Lemma 2.1.1 Let G be a graph with V (G) = {v1, ..., vn} and |E(G)| = m edges. Then
n∑
i=1

degG(vi) = 2m.

Proof Each edge of the graph contributes twice to the sum, because each edge contains
two vertices. �

If all vertices of a graph have the same degree r then the graph is r-regular. A
graph is complete if every pair of vertices are adjacent, that is, it is (n− 1)-regular, where
n is the number of vertices. We denote the complete graph with n vertices by Kn. Figure
3 shows the complete graphs K1, K2, K3 and K4.

Figure 3 – Complete graphs K1, K2, K3 and K4.

A subgraph G′(V ′, E ′) of a graph G(V,E) is a graph such that V ′ ⊆ V and E ′ ⊆ E.
An induced subgraph is one that includes all the edges whose endpoints belong to the
vertex subset. Comparing Figure 2 and Figure 4 we obtain that G′ is a subgraph of G but
it is not an induced subgraph, because the edge v2v3 should appear as in G′′. A graph is
bipartite if there is a partition of two sets of vertices such that it does not exist an edge
linking vertices of the same partition, that is, the induced subgraphs of each set of the
partition do not have any edge.

Figure 4 – Graph G′ (left) and Graph G′′ (right).

A clique is a set of vertices such that its induced subgraph is a complete graph. A
maximal clique is a clique such that it is not possible to obtain a clique adding any other
vertex. Note that each edge of a graph belongs to one maximal clique at least.

A path is a sequence of vertices such that two consecutive vertices always are linked
by an edge. A graph is connected when there is a path between every pair of vertices,
otherwise, it is called disconnected. A cycle is a path with three or more vertices such that
the first and the last vertex are the same, without other repetition of vertices. The n-cycle
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graph is a graph formed by a cycle with n vertices. The n-wheel graph is the graph formed
by connecting a single vertex to all vertices of athe n-cycle.

An intersection graph is generated from a family of sets whose each set of this family
is associated to a vertex, with an edge between two vertices when the corresponding sets
have a nonempty intersection. Two important examples are the line graphs (intersection
graph of the edges of a graph) and clique graphs (intersection graph of the maximal cliques
of a graph). We denote by L(G) and K(G), respectively the line graph of G and the clique
graph of G. There is a bijection between edges of G and vertices of L(G).

A multigraph is an extension of the definition of graph that allows multiples edges
between the same pair of vertices, that is, its edges is a multiset. Particularly, every graph
is a multigraph. An n-multiedge is the induced subgraph by two vertices with n edges
linking them.

A adjacency matrix A of a graph is a matrix such that the entries Aij are the
number of edges linking the vertices i and j.

The n-wheel graph is a graph formed by connecting a single vertex to all vertices
of the n-cycle.

2.2 Characterization of the 2-tessellable graphs
A tessellation of a graph G is a partition of the vertex set V (G) of the graph such

that each element of the partition is a clique, not necessarily a maximal clique. Elements
of the tessellation are called polygons. Since the tessellation is a partition, we have that
the intersection of two polygons is empty and the union of all polygons is equal to V (G).
We say that the polygon P covers an edge of the graph if the endpoints of this edge belong
to P . If a polygon of a tessellation T covers an edge e, we say that the tessellation T
covers e. In Figure 5 we have in the left upper corner a graph with a red (continuous line)
tessellation, in the right upper corner the same graph with a blue (dashed line) tessellation,
and the lower part of the figure describes the same graph with these two tessellations.
Note that the two tessellations together cover all edges of the graph.

A graph is n-tessellable if n tessellations are enough to cover all edges. A question
that naturally arises from the study of the staggered quantum walk is which graphs are
2-tessellable. Portugal (PORTUGAL, 2016) has proved the following characterization.

Theorem 2.2.1 (PORTUGAL, 2016) A connected graph is 2-tessellable if and only if its
clique graph is 2-colorable.

We know that a graph is bipartite if and only if it is 2-colorable. Then a graph is
2-tessellable if and only if its clique graph is bipartite. Let G be a graph and γ be a set of
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(a) (b)

(c)

Figure 5 – Figure (a) show the red tessellation, figure (b) show the blue tessellation and
figure (c) show that the graph is 2-tessellable

graphs, the graph G is γ-free if no induced subgraph of G is isomorphic to any graph of γ.

Figure 6 – 4-fan, claw, 4-wheel

Let β be the set of claw, 4-fan, 4-wheel (Figure 6), together with all n-cycles, where
n is odd and greater than or equal to 5. Peterson (PETERSON, 2003) has proved the
following theorem.

Theorem 2.2.2 (PETERSON, 2003) K(G) is bipartite if and only if G is β-free.

From Proposition 2.1 and Theorem 2.2 we have a set of forbidden induced subgraphs.
A graph G is 2-tessellable if and only if G is β-free.

If G is a multigraph, the underlying graph of G is a simple graph that is obtained
from G by converting each multiple edge into a single edge.

Definition 2.2.3 A reduced subgraph R(G) of a multigraph G is a simple graph ob-
tained from the underlying graph of G by deleting all its leafs.

In Figure 7 we have an example of a multigraph G and it reduced subgraph R(G).
The vertices v1 and v3 were eliminated because they only have one neighbor v2 and v4,
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Figure 7 – A multigraph G (left) and its reduced subgraph R(G) (right).

respectively . The remaining vertices are adjacent in R(G) if they are in G. Moreover the
multiple edges of G become single edges in R(G).

Lemma 2.2.4 Let H be a connected multigraph with at least three vertices. If H is
triangle-free then K(L(H)) is the reduced subgraph of H.

Proof Let H be a triangle-free multigraph. The incident edges to a vertex v ∈ H form
a clique Cv in L(H). Now we show that Cv is maximal if and only if v has at least two
neighbors. If v has only one neighbor v′, Cv is not maximal because v′ has another neighbor
(H is connected with at least three vertices); it follows that Cv is a proper subclique of Cv′ .
If v has at least two neighbors, Cv is maximal because if by contradiction Cv is a proper
subclique of a larger clique then there must exist an edge in H, that is not incident to v,
sharing common vertices with all neighbors of v. Since this is not possible because H is
triangle-free, we conclude that Cv is maximal.

Each vertex v of the reduced subgraph of H is associated with a maximal clique Cv
in L(H). Then, v is associated with a vertex kv ∈ K(L(H)). Conversely, on the other hand,
a vertex of K(L(H)) is associated with a maximal clique of L(H), which is associated
with a vertex of the reduced subgraph of H. Thus, we have established a bijection between
the vertex set of K(L(H)) and the vertices of the reduced subgraph of H.

If v and v′ are adjacent in the reduced subgraph of H then kv and kv′ are adjacent
in K(L(H)) because there is an edge vv′ in H whose corresponding vertex in L(H) belongs
to the intersection of Cv and Cv′ . If kw and kw′ are adjacent in K(L(H)) then Cw and Cw′
have a nonempty intersection in L(H), and w and w′ are adjacent in the reduced subgraph
of H. This shows that K(L(H)) and the reduced subgraph of H are isomorphic. �

Now we describe an algorithm that receives as input a graph G and its clique graph
K(G) which must be triangle-free, and returns as output a graph H such that H is a root
graph of G, that is, G = L(H).

Algorithm 1

Input: G and its triangle-free clique graph K(G)

Output: H
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Step 1: : Initially H is a copy of K(G) and for each vertex v ∈ K(G) denote by
rv the corresponding vertex in H.

Step 2: Let rv and rw be two adjacent vertices of H. Let Cv and Cw be the
respective maximal cliques of G. Let m ≥ 1 be the number of vertices in the intersection
of Cv and Cw. In H link vertices rv and rw with an m-multiedge. Repeat this step for all
edges vw of K(G).

Step 3: Let Cv be a maximal clique of G. Let n be the number of vertices of
Cv which belongs only to Cv, that is, they do not belong to any other maximal clique.
Link rv with rv1 , ..., rvn ∈ H with 1-multiedge (edge). This step is repeated for all vertices
v ∈ K(G).

Figure 8 – Root graph H, line graph G = L(H) and clique graph K(G)

Figure 8 depicts an example so that K(L(H)) is the reduced subgraph of H.
Furthermore, it serves as an example of Algorithm 1, so that given G and K(G), H is the
output. In order to obtain H in this example, we start by setting H as a copy of K(G).
There are two vertices rv and rw. We look at G and count the number of vertices in the
intersection of cliques Cv and Cw. In this case, we have two purple vertices (vertices 2 and
3). In H, we have the vertices associated with their respective maximal cliques linked by
purple 2-multiedge, which corresponds to the two purple vertices. Now, we proceed by
considering the other vertices, that is, the vertices that are in only one maximal clique.
The up-hand maximal clique of G has only one extra red vertex (vertex 1). This vertex
generates a new vertex in H (vertex rv1) and a new red edge in H linking the vertex rv
with the new vertex rv1 . Similarly, we associate the two blue vertices (vertices 4 and 5) of
the bottom-hand maximal clique with two edges (4 and 5) in H linking vertex rw ∈ H
with rw1 and rw2 .

The Algorithm 1 works because we have supposed that K(G) is triangle-free. Thus
there is no vertex of G belonging to three maximal cliques otherwise the corresponding
vertices of K(G) would generate a triangle. The graph G cannot have a vertex in three
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maximal cliques because this vertex would be associated with at least three edges in Step
1 of Algorithm 1. Thus we associate each vertex of G with one edge of H. Now we show
that two vertices of G are adjacent if and only if their respective edges are adjacent in H.
Two vertices are adjacent in G if and only if they are in the same maximal clique Cv if
and only if their corresponding edges are adjacent, because these edges are incident to v.
Therefore G is the line graph of H.

Theorem 2.2.5 A graph G is the line graph of a triangle-free multigraph if and only if
K(G) is triangle-free.

Proof Let G be the line graph of a triangle-free multigraph H. We initially assume G
is connected. If H has only two vertices then G is a complete graph, so K(G) has only
one vertex and is triangle-free. If H has at least three vertices, by Lemma 2.4, K(G) is
the reduced subgraph of H thus it is triangle-free. If G is disconnected, we can apply the
previous argument for each connected component.

Let G be a graph with K(G) triangle-free, so we can use Algorithm 1 to return H
(the root graph of G). Therefore G is the line graph of H. H is triangle-free because it is
constructed by adding edges where already there are edges and with vertex of degree 1. �

Next theorem has already been proved by Peterson (PETERSON, 2003). Here we
give an alternative simpler proof.

Theorem 2.2.6 Let G be a graph. G is the line graph of a bipartite multigraph if and
only if K(G) is bipartite.

Proof Let G be the line graph of a bipartite multigraph H. We initially assume G is
connected. If H has only two vertices then G is a complete graph, so K(G) has only
one vertex and is bipartite. If H has at least three vertices, by Lemma 2.4, K(G) is the
reduced subgraph of H thus it is bipartite. If G is disconnected, we can apply the previous
reasoning for each connected component.

Let G be a graph with K(G) bipartide, so we can use Algorithm 1 to return H(the
root graph of G). Therefore G is the line graph of H. H is bipartite because we can use
the bipartition of K(G) to distribute the vertices of H, each vertex of degree 1 are in the
other partition of its adjacent vertex. �

Figure 9 shows that a graph G (right-hand graph) can have two different root
multigraphs H1 and H2, that is, L(H1) = L(H2) = G. Note that the two previous theorems
establish that there is a triangle-free and a bipartite root multigraph.
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Figure 9 – The two multigraphs on the left are root graphs of the graph on the right.

Theorems 2.2.1, 2.2.2, and 2.2.6 can be summarized and form the following charac-
terization of 2-tessellable graphs:

Theorem 2.2.7 Let G be a graph, the following statements are equivalent:
(a) G is 2-tessellable.
(b) K(G) is bipartite.
(c) G is the line graph of a bipartite multigraph.
(d) G is β-free.
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3 Coined walks

The classical random walks have applications to many fields as computer science,
physics, chemistry, biology, and economics. The simplest example is a walker on the
discrete line, he can move to the left or to the right. He tosses a coin and if it is tails he
goes leftward if it is head he goes rightward. He repeats this processes indefinitely. The
position of the walker is not deterministic, but we can calculate the probability that the
walker is on the position d at time t. We can generalize this idea for a generic graph. The
walker walks in the graph randomly, he can go only to a neighboring vertex. In quantum
walk the dynamic is given by a unitary operator that can move the particle in the graph
deterministically. Quantum mechanics gives us a superposition of the particle in many
vertices. After a measure, we obtain the position of the particle probabilistically. In this
chapter we present classical random walks and quantum walks with coins. You can find
a more concise exposition in the article (KEMPE, 2003) and a more one in the book
(PORTUGAL, 2013).

3.1 Classical random walk
In this section, we introduce the classical random walk on the line and on a general

graph.

3.1.1 Random walk on the line

First we analyze the random walk on the line. Consider a particle walking along an
axis of Z. This particle begins in position 0 and in each step (or time) it goes one unit to
the left with probability 1/2 or one unit to the right with probability 1/2. We can imagine
that a non-biased coin is tossed and if it is heads the particle goes to left and if it is tails
the particle goes to the right. We cannot predict the position of the particle at a certain
time t 6= 0, but we can find the probability that the particle is on position n at time t
(denoted by p(n, t)). For example the probability that the particle is on position −1 and 1
at time 1 is 1/2 and 1/2, that is, p(−1, 1) = p(1, 1) = 1/2. We assume that the particle
cannot stand still at any step, so p(0, 1) = 0, this is expected because for a fixed time t0,
the function p(n, t0) is a probability distribution, so

∞∑
n=−∞

p(n, t0) = 1,

for any t0. Proceeding in this way we can verify the values of the table 1 which shows
p(n, t) given t and n (the empty cells represent probability 0). Note that the particle at
time t cannot reach position n such that |n| > t.
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n -5 -4 -3 -2 -1 0 1 2 3 4 5

0 1
1 1/2 1/2
2 1/4 1/2 1/4
3 1/8 3/8 3/8 1/8
4 1/16 1/4 3/8 1/4 1/16
5 1/32 5/32 5/16 5/16 5/32 1/32

Table 1 – p(n, t) given n and t.

Lemma 3.1.1 The expression of p(n, t) is given by

p(n, t) =


0, if |n| > t or t+ n = 2k + 1, k ∈ Z;

1
2t

 t
t+n

2

 , otherwise.
(3.1)

Proof At time t the farthest the particle can reach is the position −t or t, so if |n| > t

then p(n, t) = 0.

We prove now that if t + n is odd then p(n, t) = 0 by induction in t. Note that
prove this argument proves that if the particle is situated on position n at time t then n
and t have the same parity. For t = 0 only p(0, 0) 6= 0. So if t+ n is odd then p(n, t) = 0.
We are going to separate the inductive step in two, t0 even and t0 odd. For t0 even, suppose
that the particle is on an even position, so in the next step it will be on an odd position
with time odd too. An analogous argument proves the result for t0 odd.

In order to prove the formula for the nonzero values of p(n, t) we observe first that,
at time t, we have 2t possibilities of different random walks, because in each step we have
2 possibilities. We define l(n, t) and r(n, t) as the number of steps the particle goes to left
and right, respectively, to be situated on the position n at time t. We have thatl(n, t) + r(n, t) = t

r(n, t)− l(n, t) = n
=⇒


r(n, t) = n+ t

2
l(n, t) = t− n

2
.

Note that if we know t and r(n, t) then the position of particle is determined. We will
calculate in how many ways we can go r(n, t) steps to the right in time t. In other words,
how many subsets of size r(n, t) the set {→0, ...,→t−1} possesses, where →i represents the
movement of the particle to the right at time i. Therefore if t+ n is even and |n| < t we
obtain

p(n, t) = 1
2t

 t

r(n, t)

 = 1
2t

 t
t+n

2

 . �
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Figure 10 – The graph of p(n, 100) without the zero entries.

With the previous lemma we can calculate the p(n, t) for any n and t. In Figure 10
we show the graph of p(n, 100) without the zero entries.

We are interested in estimating how far from the origin the particle is situated
at time t. To do this we use the expected distance, which is a statistical quantity. The
previous lemma is important because with it we can calculate the standard deviation of
the random walk, which is equal to the expected distance when the probability distribution
is symmetrical (note that p(n, t) = p(−n, t) by equation (3.1)).

Proposition 3.1.2 The standard deviation of the probability distribution at time t is

σ(t) =
√
t. (3.2)

Proof The standard deviation is given by σ(t) =
√
〈n2〉 − 〈n〉2, where 〈ni〉 is the i-th

moment of the distance. Note that p(n, t) = p(−n, t), so we have that

〈n〉 =
∞∑

n=−∞
np(n, t) = 0 =⇒ σ(t) =

√√√√ ∞∑
−∞

n2p(n, t). (3.3)

Since p(n, t) = 0 when |n| > t we have that
∞∑
−∞

n2p(n, t) =
t∑
−t
n2p(n, t). (3.4)

Using the change of variables n = i− t, the fact of i = t+n odd implies p(n, t) = 0,
the new change of variables i = 2j and equation (3.1) we obtain the left-hand side of the
following equation

t∑
j=0

(2j − t)2 1
2t

 t

j

 = 4
2t

t∑
j=0

j2

 t

j

− 4t
2t

t∑
j=0

j

 t

j

+ t2

2t
t∑

j=0

 t

j

 .
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Using the formulas
m∑
k=0

k2

 m

k

 = m22m−2 +m2m−2,

m∑
k=0

k

 m

k

 = m2m−1 and
m∑
k=0

 m

k

 = 2m

the right-hand side of the previous equation becomes, after some simplifications,
∞∑
−∞

n2p(n, t) = t (3.5)

and with the conclusion of the statement (3.3) we finalize the demonstration. �

3.1.2 Random walks on graphs

We use Markov chains to define a random walk on a graph G with n vertices. A
Markov chain is a stochastic process, where we have the time t ∈ N (on the discrete-time
case) and the state p(t) ∈ [0, 1]n, which is a probability distribution of the random walk at
time t, that is, pi(t) is the probability of the particle being situated on vertex i at time t,
so the sum of all pi(t) is equal to 1 for each time t fixed. The state is a function of time
because it changes during the evolution of the system. We start with an initial state p(0)
and in each step we apply a matrix M , called of transition matrix (or probability matrix),
that changes the probability distribution. So we have that

p(t) = M tp(0), (3.6)

note that M t is not the transpose of M .

When the particle is in the vertex j it has probability Mij to go for the vertex i,
where Mij is the entry of the transition matrix on the i-th row and j-th column. So M
should satisfy two properties: i) all of its entries should be positive and ii) the sum of the
entries of each column should be 1. These properties are sufficient to ensure that p(t) is a
probability distribution for all t. Indeed, if these properties hold, then

n∑
i=1

pi(t) =
n∑
i=1

n∑
j=1

Mijpj(t− 1) =
n∑
j=1

n∑
i=1

Mijpj(t− 1) =
n∑
j=1

pj(t− 1). (3.7)

Since p(0) is a probability distribution the result holds by induction.

It is common to define

Mij =

1/dj, if i is adjacent to j,

0, otherwise,
(3.8)

where dj is the degree of the vertex j. In this case we have that Mij = Aij/dj, where Aij
is the entry of the adjacency matrix of the graph. We have that the particle only can go
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Figure 11 – The 3-wheel, 4-wheel and 5-wheel graphs.

to adjacent vertices and if it is in the vertex i it goes to the neighbors of i with the same
probability. We call this as uniform random walk.

We take as an example the uniform random walk on the n-wheel graph. Figure
11 shows the 3-wheel, 4-wheel, and 5-wheel. We label the vertices of the graph so that
1, . . . , n are the vertices of the cycle and n+ 1 is the central vertex. Hence, the transition
matrix of this graph is given by

M =



0 1
3 0 . . .

1
3

1
n

1
3 0 1

3 . . . 0 1
n

0 1
3 0 . . . 0 1

n... ... ... . . . ... ...
1
3 0 0 . . . 0 1

n
1
3

1
3

1
3 . . .

1
3 0



.

Note that each vertex of the cycle has 3 neighbors and the central vertex has n neighbors.

We assume as initial condition that the particle is in the central vertex. So we have
that

p(0) =


0
...
0
1

 .

Proposition 3.1.3 The probability distribution at time t is given by

p(t) =



fn(t)
fn(t)
...

fn(t)
gn(t)


, (3.9)

where fn(t) = 3t − (−1)t
4n3t−1 and gn(t) = 3t−1 − (−1)t−1

4 · 3t−1 .
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Proof We prove by induction on t. We can verify that equation (3.9) holds for p(0). We
suppose that it holds for p(t). Note that

p(t+ 1) = Mp(t) = M


fn(t)
...

gn(t)

 =


2 · (3t − (−1)t)

3 · 4n3t−1 + 3t−1 − (−1)t−1

4n3t−1
...

n(3t − (−1)t)
3 · 4n3t−1

 =


3t+1 − (−1)t+1

4n3t...
3t − (−1)t

4 · 3t


is the inductive step. �

Analyzing the expression of p(t) we can see as t tends to infinity the probability of the
particle being situated in the central vertex tends to 1/4 and that of a vertex of the cycle
tends to 3/4n.

3.2 Discrete-time quantum walk
In this section, we introduce the coined quantum walk on the line and on a general

graph.

3.2.1 Quantum walk on the line

Discrete-time quantum walks are the quantum version of discrete-time classical
random walks. To compare with the classical case we start studying the quantum walk on
the line using the coined model. We associate the position of the particle with a Hilbert
space Hp (position space) which has as one possible basis the set

{∣∣∣i〉; i ∈ Z
}
. We need

one more Hilbert space Hc (coined space) which is associated with the spin of the particle.
If we have a spin up we associate it with the vector

∣∣∣ ↑ 〉 and if we have a spin down we
associate it with the vector

∣∣∣ ↓ 〉. These two vectors (coin vectors) form a basis of Hc

and report if the particle goes leftward or rightward. Suppose the particle is situated on
position

∣∣∣n〉, if it has spin up then in the next step it goes to position
∣∣∣n+ 1

〉
and if it has

spin down it goes to position
∣∣∣n− 1

〉
. Finally, we define the Hilbert space H = Hc ⊗Hp

where the quantum walk act.

We are interested in two evolution operators, one is the coin operator C, which
can transform the coin vector on a coin, and other is the shift operator S, which makes
the particle walk through the line. As aforementioned the shift operator should satisfy

S
∣∣∣ ↑ 〉∣∣∣n〉 =

∣∣∣ ↑ 〉∣∣∣n+ 1
〉
,

S
∣∣∣ ↓ 〉∣∣∣n〉 =

∣∣∣ ↓ 〉∣∣∣n− 1
〉
.
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We can verify that

S =
∣∣∣ ↓ 〉〈 ↓ ∣∣∣ ∞∑

n=−∞

∣∣∣n− 1
〉〈
n
∣∣∣+ ∣∣∣ ↑ 〉〈 ↑ ∣∣∣ ∞∑

n=−∞

∣∣∣n+ 1
〉〈
n
∣∣∣. (3.10)

We can choose several linear transformations for the coin operator. Let
∣∣∣ψ(0)

〉
=
∣∣∣ ↑ 〉∣∣∣0〉

be the initial state of the quantum walk. If we apply the shift operator recurrently in∣∣∣ψ(0)
〉
the particle goes to the right in all steps, for this reason we need the coin operator.

We use as coin operator the Hadamard operator

H = 1√
2
(∣∣∣ ↑ 〉〈 ↑ ∣∣∣+ ∣∣∣ ↑ 〉〈 ↓ ∣∣∣+ ∣∣∣ ↓ 〉〈 ↑ ∣∣∣− ∣∣∣ ↓ 〉〈 ↓ ∣∣∣) , (3.11)

which generates an unbiased coin. Now we define the evolution operator as U = S · (H⊗ I),
which plays a central role on the quantum walk. Now if we apply U to the initial state we
obtain

U
∣∣∣ψ(0)

〉
= 1√

2
(∣∣∣ ↓ 〉∣∣∣− 1

〉
+
∣∣∣ ↑ 〉∣∣∣1〉) . (3.12)

If we make a measurement, on the last state, using the standard basis, we get
∣∣∣ ↓ 〉∣∣∣− 1

〉
with probability 1/2 and

∣∣∣ ↑ 〉∣∣∣1〉 with probability 1/2 too. If we repeat this process
(take the resulting state, applying U and making a measurement), we obtain the classical
random walk on the line exactly as studied on subsection 3.1.1.

HH
HHHHt

n -5 -4 -3 -2 -1 0 1 2 3 4 5

0 1
1 1/2 1/2
2 1/4 1/2 1/4
3 1/8 1/8 5/8 1/8
4 1/16 1/8 1/8 5/8 1/16
5 1/32 5/32 1/8 1/8 17/32 1/32

Table 2 – Table of pn(t) given n and t.

The point of the quantum walk is not to make intermediary measurements to
better explore quantum superposition and interference. The idea here is to apply U a
determined number of times to the initial state and only after this make a measurement.
Each step of the quantum walk is the application of U to the previous state, that is,∣∣∣ψ(t)

〉
= U

∣∣∣ψ(t− 1)
〉
, where

∣∣∣ψ(t)
〉
is the state of the quantum walk on step t. Explicitly,

we have that ∣∣∣ψ(t)
〉

= U t
∣∣∣ψ(0)

〉
. (3.13)
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Computing the first three steps of the quantum walk illustrates a difference with the
classical world,∣∣∣ψ(1)

〉
= U

∣∣∣ψ(0)
〉

= 1√
2
(∣∣∣ ↓ 〉∣∣∣− 1

〉
+
∣∣∣ ↑ 〉∣∣∣1〉) ,∣∣∣ψ(2)

〉
= U

∣∣∣ψ(1)
〉

= 1
2
(
−
∣∣∣ ↓ 〉∣∣∣− 2

〉
+
∣∣∣ ↑ 〉∣∣∣0〉+

∣∣∣ ↓ 〉∣∣∣0〉+
∣∣∣ ↑ 〉∣∣∣2〉) ,∣∣∣ψ(3)

〉
= U

∣∣∣ψ(2)
〉

= 1
2
√

2
(∣∣∣ ↓ 〉∣∣∣− 3

〉
−
∣∣∣ ↑ 〉∣∣∣− 1

〉
+
∣∣∣ ↓ 〉∣∣∣1〉+ 2

∣∣∣ ↑ 〉∣∣∣1〉+
∣∣∣ ↑ 〉∣∣∣3〉) .
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Figure 12 – Graph of the probability distribution after the measurement on the step 100
with initial state

∣∣∣ψ(0)
〉

=
∣∣∣ ↑ 〉∣∣∣0〉.

The probability of finding the particle on position n after t steps is given by

pn(t) =
∣∣∣〈ψ(t)

∣∣∣ (∣∣∣ ↑ 〉∣∣∣n〉)∣∣∣2 +
∣∣∣〈ψ(t)

∣∣∣ (∣∣∣ ↓ 〉∣∣∣n〉)∣∣∣2 .
For a fixed t, pn(t) is a probability distribution. If we measure after the first and second
steps we obtain the same distribution of the classical random walk on the line, but if the
measurement is performed after the third step a different distribution holds. Table 2 shows
the probability distribution of the quantum walk on the line after t steps, which displays
a remarkable difference when compared to Table 1. Such difference is due to quantum
interference, which is firstly seen when

∣∣∣ψ(3)
〉
is computed, the terms with

∣∣∣− 1
〉
take a

destructive interference and the terms with
∣∣∣1〉 take a constructive. In Figure 12 we see the

probability distribution if the measurement is realized on step 100 of such quantum walk,
again the particle is concentrated with larger probability on the right. This concentration
is due to the initial state’s choice, but if a different one is considered,

∣∣∣ψ(0)
〉

=
∣∣∣ ↓ 〉∣∣∣0〉,

in step 100 we would get the symmetrical graph of the Figure 12. To get a symmetrical
probability distribution we have to take as initial state a linear combination of the two
states of the coin, for example consider∣∣∣ψ(0)

〉
= 1√

2
(∣∣∣ ↑ 〉+ i

∣∣∣ ↓ 〉) ∣∣∣0〉.
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Note that since Hadamard operator does not have complex entries, the trajectories of
∣∣∣ ↑ 〉

and
∣∣∣ ↓ 〉 have no interference with each other. Figure 13 shows the probability distribution

of this quantum walk with the above initial state if we measure in the 100-th step. Figures
12 and 13 were generated using the program Hiperwalk1.
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Figure 13 – Graph of the probability distribution after the measurement on the step 100
with initial state

∣∣∣ψ(0)
〉

= 1√
2
(∣∣∣ ↑ 〉∣∣∣0〉+ i

∣∣∣ ↓ 〉∣∣∣0〉).
In subsection 3.1.1, we saw that the standard deviation of the classical random walk

on the line is
√
t. We want to compare this with the quantum case. When we simulate the

quantum walk on Hiperwalk it returns the standard deviation for different values of the
time. In Figure 14 we have a comparison of the standard deviation in the two cases and
we have that σ(t) = 0.54t in the second case. The fact that we have a linear dependence
on the standard deviation is remarkable. If the particle has a deterministic walk, let us say
it goes to the right in each step the standard deviation would be exactly t, that is, a linear
dependence too. We say that the movement has a ballistic behavior. We also have this
behavior for the quantum walk with approximately half of the velocity, with the advantage
that the particle can be situated in the two sides of the line.

3.2.2 Quantum walk on graphs

Now we define the coined quantum walk on general graphs. We begin with a
d-regular graph, that is, a graph such that each vertex has degree d. In this case we denote,
for each vertex v, the edges that links v with others vertices by ejv, with j ∈ {1, ..., d}. As
we can see in Figure 15 the labels of the edges are determined by the vertex that edge
links (note that the two labels of the same edge are entirely independent). The Hilbert
1 HiperWalk is a freeware open-source program that allows the user to perform simulations of quantum

walks on graphs using HPC.
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Figure 14 – Graph of the standard deviation of the random walk (squares) and quantum
walk (circles) on the line.

space Hc of the coin has dimension d. The shift operator is defined by

S
∣∣∣j〉∣∣∣v〉 =


∣∣∣j〉∣∣∣w〉, if ejv = vw

0, otherwise.
(3.14)

If we want to maintain the property that the coin is balanced, that is, the particle has
the same probability to go to a neighboring vertex, we can use the generalization of the
Hadamard operator, the Discrete Fourier Transform defined as

DFT = 1√
d


1 1 1 . . . 1
1 w w2 . . . wd−1

... ... ... . . . ...
1 wd−1 w2(d−1) . . . w(d−1)(d−1)

 ,

where w = exp
(2πi
d

)
is a d-th root of unity.

If the graph is not d-regular, we can define the quantum walk in many ways. Let d
be the largest degree of the graph vertices. On each vertex we add loops (an edge that
links a vertex with itself) until the graph becomes d-regular (each loop adds 1 to the
degree of the vertex), as we can see in Figure 16. Therefore we get a d-regular graph and
the coined quantum walk can now be defined. Another way to define a quantum walk with
coin is to define a coin operator for each vertex of the graph.
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Figure 15 – A 2-regular graph with labels, for the edges and vertices.

Figure 16 – A graph with the loops completing the degree of the vertices of the graph.
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4 Staggered Quantum Walk

We can define a quantum walk without the use of a coin. This is useful for various
reasons, the main one being that it allow us to use a Hilbert space of smaller dimension.
There were more than one model of coinless quantum walk. In this section, we focus on a
recently proposed model, the staggered quantum walk (SQW) (PORTUGAL et al., 2016).

Let G(V,E) be a 2-tessellable graph with vertex set V (G) and edge set E(G). Let
Tα, Tβ be tessellations that cover all edges of G. Let Tα = {α0, ..., αn0−1} be the first graph
tessellation with n0 polygons and let Tβ = {β0, ..., βn1−1} be the second graph tessellation
with n1 polygons. We take as Hilbert space Hm, where m = |V (G)| can be infinite. The
computational basis of this Hilbert space is

{∣∣∣k〉, k ∈ V (G)
}
, that is, we associate each

vertex of the graph with a state of the computational basis. Three steps are required to
construct the staggered quantum walk.

First, we associate each polygon αj of the tessellation Tα with a unit vector
∣∣∣αj〉 in

such a way that ∣∣∣αj〉 =
∑

k∈V (G)
aj,k

∣∣∣k〉, (4.1)

where ajk ∈ C with aj,k 6= 0 if k ∈ αj and aj,k = 0 otherwise. The most usual amplitudes
are the uniform distribuition, that is, aj,k = 1/

√
|αj| if k ∈ αj. We make this association

to the polygons of the tessellation Tβ too. We have that∣∣∣βj〉 =
∑

k∈V (G)
bj,k

∣∣∣k〉, (4.2)

where bj,k 6= 0 if k ∈ βj and bj,k = 0 otherwise.

Second, we define two local operators. A local operator is an operator that preserves
the structure of the graph, that is, if the particle is in vertex v then the application of this
operator takes the particle only to a neighbor of v. They are defined as

H0 = 2
n0−1∑
j=0

∣∣∣αj〉〈αj∣∣∣− I, (4.3)

H1 = 2
n1−1∑
j=0

∣∣∣βj〉〈βj∣∣∣− I. (4.4)

We prove that H0 is unitary and Hermitian, that is, H2
0 = I. Using the fact that

〈
αj
∣∣∣αj′〉 =

δjj′ we have that

H2
0 = 4

n0−1∑
j=0

n0−1∑
j′=0

∣∣∣αj〉〈αj∣∣∣αj′〉〈αj′ ∣∣∣− 2
n0−1∑
j=0

∣∣∣αj〉〈αj∣∣∣− 2
n0−1∑
j′=0

∣∣∣αj′〉〈αj′ ∣∣∣+ I =

4
n0−1∑
j=0

∣∣∣αj〉〈αj∣∣∣− 4
n0−1∑
j=0

∣∣∣αj〉〈αj∣∣∣+ I = I
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Analogously, we prove that H1 is unitary and Hermitian. Therefore H0 and H1 are
reflections.

Third, we define the evolution operator as (PORTUGAL; OLIVEIRA; MOQADAM,
2017)

U = eiθ1H1eiθ0H0 . (4.5)

We must pay attention to two important factors. First, equations (4.3) and (4.4)
are defined in such a way that the particle situated on a vertex of a polygon only moves to
vertices in this polygon. Since the polygon is a clique, the operators H0 and H1 are local.
Second, if two tessellations do not cover all edges, we have to define more tessellations until
all edges are covered, because if there is an edge E that is not covered by any tessellation
the staggered quantum walk would have the same dynamic with and without E. To each
new tessellation we associate a new local operator. In the next section, we see a more
detailed example of the staggered quantum walk.

4.1 SQW on the line of diamonds

Figure 17 – Line of diamonds

A diamond is a complete graph with four vertices with one edge removed. The line
of diamonds is a graph obtained by replacing each vertex of an infinite one-dimensional
lattice by a diamond(Figure 17). In this graph we can describe the position of a particle
in a vertex (x, y) by a unitary vector

∣∣∣x, y〉, where x ∈ Z is the horizontal position and
y ∈ {0, 1} is the vertical position. These vectors form an orthonormal basis of the Hilbert
space H∞ associated with this graph. A quantum walk is determined by its evolution
operator. In the staggered quantum walk, the graph structure plays a key role. Since the
particle can only move from a vertex to another if they are adjacent, the cliques of the
graph induce how the particle moves. Remember that the set of edges of a graph can be
partitioned by the set of maximal cliques.

The first thing we have to do is a partition of the set of vertices such that each
element of the partition is a clique. We call the elements of the partition by polygon
and the partition by tessellation. Figure 18 shows an example of a tessellation of the
line of diamonds. Each polygon consists of the three vertices in the red triangle, and the



Chapter 4. Staggered Quantum Walk 36

tessellation is the set of all triangles. An edge is covered by a polygon if the endpoints of
the edge are in the polygon.

Figure 18 – Line of diamonds with red tessellation

Now we associate each polygon with a unit vector. To do this association the vectors
that describe the vertices of the polygon should have non-zero complex amplitudes and all
the others vectors should have amplitudes equal to zero. The most usual association is the
uniform superposition∣∣∣u0

x

〉
= 1√

3
(∣∣∣2x, 0〉+

∣∣∣2x+ 1, 0
〉

+
∣∣∣2x+ 1, 1

〉)
.

The first local operator is

H0 = 2
∞∑

x=−∞

∣∣∣u0
x

〉〈
u0
x

∣∣∣− I.
Let us check how it works if the particle is in vertex (0, 0):

H0

∣∣∣0, 0〉 = 2
∞∑

x=−∞

∣∣∣u0
x

〉〈
u0
x

∣∣∣0, 0〉− ∣∣∣0, 0〉
= 2√

3

∞∑
x=−∞

∣∣∣u0
x

〉
δx0 −

∣∣∣0, 0〉
= −1

3
∣∣∣0, 0〉+ 2

3
∣∣∣1, 0〉+ 2

3
∣∣∣1, 1〉.

We can see in Figure 18 that, after applying H0, the particle is in the polygon that contains
the vertex (0, 0). This property can be extended to any vector of the computational basis.
This means that we need more operators for the particle to cross all the graph.

Thus we make a new tessellation as we can see in Figure 19. Similarly we associate
each polygon with the unitary vector∣∣∣u1

x

〉
= 1√

3
(
∣∣∣2x, 0〉+

∣∣∣2x− 1, 0
〉

+
∣∣∣2x− 1, 1

〉
).

The second local operator is

H1 = 2
∞∑

x=−∞

∣∣∣u1
x

〉〈
u1
x

∣∣∣− I.
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Figure 19 – Line of diamonds with blue tessellation

We do this until all the edges belong to at least one tessellation. In this way we
cover all edges. The evolution operator is

U = eiθH1eiθH0

and the state in time t is ∣∣∣ψ(t)
〉

= U t
∣∣∣ψ(0)

〉
(4.6)

where
∣∣∣ψ(0)

〉
is the initial state. The probability of finding the walker on vertex (x, y) after

t time steps is px,y(t) =
∣∣∣〈x, y∣∣∣ψ(t)

〉∣∣∣2. When we fix t, px,y(t) is a probability distribution.

4.2 Simulation of the SQW on the line of diamonds
We want to determine the standard deviation of the position of the walker of the

staggered quantum walk in the line of diamonds. With this information we can know how
far the particle moves from the initial location

∣∣∣ψ(0)
〉

=
∣∣∣0, 0〉. We want to know with

which θ we obtain a higher standard deviation. For this purpose, we use the program
HiperWalk.1

To use Hiperwalk we provide eiθH1 and eiθH0 in matrix form. Remember that for
any t the

∣∣∣ψ(t)
〉
in computational basis has complex amplitude equal to 0 for an infinite

number of vectors of the computational basis. A staggered quantum walk that does not
reach the borders of a finite line of diamonds is also a walk in an infinite line of diamonds.
So we can do the simulation for a sufficiently large number of vertices with a time which
the walker does not reach the border. We choose 60,000 vertices(20,000 diamonds) and
10,000 time steps. Thus the input are two complex matrices 60000× 60000, but they are
highly sparse by construction. For the initial state, we take

∣∣∣ψ(0)
〉

=
∣∣∣0, 0〉. We choose as

output the state
∣∣∣ψ(10000)

〉
and the intermediary states

∣∣∣ψ(1000k)
〉
. Next we calculated

the standard deviation for the staggered quantum walk when the steps time are multiples
of 1000 to verify if we have a linear function as expected. Figure 20 plots the standard
1 HiperWalk is a freeware open-source program that allows the user to perform simulations of quantum

walks on graphs using HPC.
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Figure 20 – Standard Deviation for θ = π/10, π/5, 3π/10, 2π/5 and π/2

Figure 21 – Slope for different θ

deviation σ(t) as a function of t for some values of θ. These results show that σ(t) is a
linear function of t, whose slope depends on θ.

Now we calculate the slope σ(t)/t for various values of θ. Figure 21 shows σ(t)/t
as a function of θ ∈ {iπ/100; 0 ≤ i ≤ 100}. The largest slope is obtained for θ =
44π/100 and 56π/100. Since σ(t) is a linear function of t, we have that the movement of
the particle is ballistic.
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4.3 Analysis of standard deviation
Now we are interested to find an expression for the standard deviation for a general

θ. This expression comes from:

σ(t) =
√
〈D̂2〉t − 〈D̂〉2t , (4.7)

where 〈D̂n〉t is the n-th moment of the distance at time t.

4.3.1 The n-th moment

To calculate analytically the standard deviation we use the symmetry of the graph.
We can see that all the vertices of the form (2x, 0) are symmetrical. The same holds for
(2x+ 1, 0) and (2x+ 1, 1). So we can define a Fourier basis for the Hilbert space using the
periodicity of the graph. We define the staggered Fourier basis (SANTOS; PORTUGAL;
BOETTCHER, 2015) as:∣∣∣ψ0

k

〉
=

∞∑
x=−∞

e−ik(2x)
∣∣∣2x, 0〉

∣∣∣ψ1
k

〉
= 1√

2

∞∑
x=−∞

e−ik(2x+1)
(∣∣∣2x+ 1, 0

〉
+
∣∣∣2x+ 1, 1

〉)
∣∣∣ψ2
k

〉
= 1√

2

∞∑
x=−∞

e−ik(2x+1)
(∣∣∣2x+ 1, 0

〉
−
∣∣∣2x+ 1, 1

〉)
We can reduce these three

equations to only one:

∣∣∣ψpk〉 =
(

1√
2

)1−δp0 ∞∑
x=−∞

e−ik(2x+1−δp0)
(∣∣∣2x+ 1− δp0, 0

〉
+ (δp0 − 1)p+1

∣∣∣2x+ 1, 1
〉)

These vectors are very important in quantum walks because of the following statement
and proposition.

Statement 4.3.1 The set
{∣∣∣ψpk〉; 0 ≤ p ≤ 2, k ∈ (−π, π)

}
is formed by orthogonal vectors

of the Hilbert space, that is,
〈
ψpk

∣∣∣ψp′k′〉 = δpp′δ(k − k′).

Before we see the next proposition, we denote by Ωk the hyperplane spanned by
{∣∣∣ψ0

k

〉
,
∣∣∣ψ1
k

〉
,
∣∣∣ψ2
k

〉}
for a fixed k.

Proposition 4.3.2 For a fixed k, Ωk is invariant under the action of H0 and H1, that is,∣∣∣u〉 ∈ Ωk =⇒ H0

∣∣∣u〉, H1

∣∣∣u〉 ∈ Ωk.
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Proof We are going to verify how H0 and H1 act on
∣∣∣ψ0
k

〉
,
∣∣∣ψ1
k

〉
and

∣∣∣ψ2
k

〉
.

H0

∣∣∣ψ0
k

〉
=

∞∑
x=−∞

e−ik2xH0

∣∣∣2x, 0〉
=

∞∑
x=−∞

e−ik2x
(
−1

3
∣∣∣2x, 0〉+ 2

3
∣∣∣2x+ 1, 0

〉
+ 2

3
∣∣∣2x+ 1, 1

〉)

= −1
3

∞∑
x=−∞

e−ik2x
∣∣∣2x, 0〉+ 2

√
2eik
3

(
1√
2

) ∞∑
x=−∞

e−ik(2x+1)
(∣∣∣2x+ 1, 0

〉
+
∣∣∣2x+ 1, 1

〉)

= −1
3
∣∣∣ψ0
k

〉
+ 2
√

2eik
3

∣∣∣ψ1
k

〉
Similarly we obtain:

H0

∣∣∣ψ1
k

〉
= +2

√
2e−ik
3

∣∣∣ψ0
k

〉
+ 1

3
∣∣∣ψ1
k

〉
H0

∣∣∣ψ2
k

〉
= −

∣∣∣ψ2
k

〉
H1

∣∣∣ψ0
k

〉
= −1

3
∣∣∣ψ0
k

〉
+ 2
√

2e−ik
3

∣∣∣ψ1
k

〉
H1

∣∣∣ψ1
k

〉
= +2

√
2eik
3

∣∣∣ψ0
k

〉
+ 1

3
∣∣∣ψ1
k

〉
H1

∣∣∣ψ2
k

〉
= −

∣∣∣ψ2
k

〉
A vector is in Ωk if and only if it is a linear combination of

∣∣∣ψ0
k

〉
,
∣∣∣ψ1
k

〉
and

∣∣∣ψ2
k

〉
. For any

vector
∣∣∣u〉 ∈ Ωk, it is easy to verify, using the above equalities, that H0

∣∣∣u〉, H1

∣∣∣u〉 ∈ Ωk.
Therefore Ωk is invariant under H0 and H1.�

The last proposition gives us, for a fixed k, two reduced matrices Hk
0 and Hk

1 which act on
Ωk, they are, respectively, H0 and H1 restricted to Ωk in the basis

{∣∣∣ψ0
k

〉
,
∣∣∣ψ1
k

〉
,
∣∣∣ψ2
k

〉}
. We

have that

Hk
0 =



−1
3

2
√

2e−ki
3 0

2
√

2eki
3

1
3 0

0 0 −1


and

Hk
1 =



−1
3

2
√

2eki
3 0

2
√

2e−ki
3

1
3 0

0 0 −1
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Consider an operador from H to Ωk, which maps
∣∣∣ψpk〉 to the 3-dimensional vector

∣∣∣p〉. We
define Hk

0 as H0 restricted to Ωk and consequently we obtain

H0

∣∣∣ψpk〉 =
2∑

p′=0

〈
p′
∣∣∣Hk

0

∣∣∣p〉∣∣∣ψp′k 〉, (4.8)

Similarly Hk
1 is H1 restricted to Ωk and then

H1

∣∣∣ψpk〉 =
2∑

p′=0

〈
p′
∣∣∣Hk

1

∣∣∣p〉∣∣∣ψp′k 〉. (4.9)

We define Uk = eiθH
k
1 eiθH

k
0 . Since Hk

0 and Hk
1 are involutory matrices it follows that

eiθH0,1 = cos(θ)I + i sin(θ)H0,1. Using equations (4.8), (4.9) and the last two we obtain

U
∣∣∣ψpk〉 =

2∑
p′=0

〈
p′
∣∣∣Uk∣∣∣p〉∣∣∣ψp′k 〉. (4.10)

Proposition 4.3.3 Let λpk be the eigenvalues of Uk with eigenvectors
∣∣∣wpk〉. The eigenvalues

of U are λpk with eigenvectors
∣∣∣vpk〉 =

2∑
p′=0

〈
p′
∣∣∣wpk〉∣∣∣ψp′k 〉.

Proof
U
∣∣∣vpk〉 = U

2∑
p′=0

〈
p′
∣∣∣wpk〉∣∣∣ψp′k 〉 =

2∑
p′=0

〈
p′
∣∣∣wpk〉U ∣∣∣ψp′k 〉

Using equation (4.10) we obtain

U
∣∣∣vpk〉 =

2∑
p′=0

〈
p′
∣∣∣wpk〉 2∑

p′′=0

〈
p′′
∣∣∣Uk∣∣∣p′〉∣∣∣ψp′′k 〉 =

2∑
p′′=0

〈
p′′
∣∣∣Uk 2∑

p′=0

〈
p′
∣∣∣wpk〉∣∣∣p′〉∣∣∣ψp′′k 〉

=
2∑

p′′=0

〈
p′′
∣∣∣Uk∣∣∣wpk〉∣∣∣ψp′′k 〉 = λpk

2∑
p′′=0

〈
p′′
∣∣∣wpk〉∣∣∣ψp′′k 〉 = λpk

∣∣∣vpk〉

�

In equation (4.10) we make the product on the right by
〈
ψpk

∣∣∣. After this we make a
summation on p and an integration on k getting

U
∫ π

−π

dk

2π

2∑
p=0

∣∣∣ψpk〉〈ψpk∣∣∣ =
∫ π

−π

dk

2π

2∑
p=0

2∑
p′=0

〈
p′
∣∣∣Uk∣∣∣p〉∣∣∣ψp′k 〉〈ψpk∣∣∣.

Using the completeness relation we obtain

U =
∫ π

−π

dk

2π

2∑
p=0

2∑
p′=0

〈
p′
∣∣∣Uk∣∣∣p〉∣∣∣ψp′k 〉〈ψpk∣∣∣. (4.11)
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Equation (4.6) tells us that it is important to calculate U t. We will prove by induction
that

U t =
∫ π

−π

dk

2π

2∑
p=0

2∑
p′=0

〈
p′
∣∣∣U t

k

∣∣∣p〉∣∣∣ψp′k 〉〈ψpk∣∣∣. (4.12)

For t = 1 we have the equation (4.11). Suppose this is true for t = n− 1. Then we have

Un = Un−1U =
∫ π

−π

∫ π

−π

dk

2π
dk′

2π
∑
p,p′,
p′′,p′′′

〈
p′
∣∣∣Un−1

k

∣∣∣p〉∣∣∣ψp′k 〉〈ψpk∣∣∣〈p′′′∣∣∣Uk′ ∣∣∣p′′〉∣∣∣ψp′′′k′

〉〈
ψp
′′

k′

∣∣∣
=

∫ π

−π

∫ π

−π

dk

2π
dk′

2π
∑
p,p′,
p′′,p′′′

〈
p′
∣∣∣Un−1

k

∣∣∣p〉〈p′′′∣∣∣Uk′ ∣∣∣p′′〉∣∣∣ψp′k 〉〈ψpk∣∣∣ψp′′′k′

〉〈
ψp
′′

k′

∣∣∣
Using statement (4.3.1) we obtain

Un =
∫ π

−π

∫ π

−π

dk

2π
dk′

2π
∑
p,p′,
p′′,p′′′

〈
p′
∣∣∣Un−1

k

∣∣∣p〉〈p′′′∣∣∣Uk′∣∣∣p′′〉∣∣∣ψp′k 〉δpp′′′δ(k′ − k)
〈
ψp
′′

k′

∣∣∣
=

∫ π

−π

dk

2π
∑
p,p′,
p′′

〈
p′
∣∣∣Un−1

k

∣∣∣p〉〈p∣∣∣Uk∣∣∣p′′〉∣∣∣ψp′k 〉〈ψp′′k ∣∣∣
=

∫ π

−π

dk

2π
∑
p′,p′′

〈
p′
∣∣∣Un

k

∣∣∣p′′〉∣∣∣ψp′k 〉〈ψp′′k ∣∣∣
where we used the completeness relation in the last identity.

As we can see in equation (4.7) our goal is to calculate the n-th moment. So we will
use the characteristic function

〈
eik0D̂

〉
t

=
〈
ψ(t)

∣∣∣eik0D̂
∣∣∣ψ(t)

〉
, where D̂ is a transformation

such that D̂
∣∣∣x, y〉 = x

∣∣∣x, y〉, that is, D̂ returns the distance of a computational basis vector
to the origin. Using equations (4.6) and (4.12) we get that
〈
eik0D̂

〉
t

=
∫ π

−π

∫ π

−π

dk

2π
dk′

2π
∑
p,p′,
p′′,p′′′

〈
p′
∣∣∣(U t

k)†
∣∣∣p′′′〉〈p∣∣∣U t

k′

∣∣∣p′′〉〈ψ(0)
∣∣∣ψp′k 〉〈ψp′′′k

∣∣∣eik0D̂
∣∣∣ψpk′〉〈ψp′′k′ ∣∣∣ψ(0)

〉

But

eik0D̂
∣∣∣ψpk′〉 = eik0D̂

(
1√
2

)1−δp0 ∞∑
x=−∞

e−ik
′(2x+1−δp0)

(∣∣∣2x+ 1− δp0, 0
〉

+ (δp0 − 1)p+1
∣∣∣2x+ 1, 1

〉)

=
(

1√
2

)1−δp0 ∞∑
x=−∞

e−i(k
′−k0)(2x+1−δp0)

(∣∣∣2x+ 1− δp0, 0
〉

+ (δp0 − 1)p+1
∣∣∣2x+ 1, 1

〉)
=

∣∣∣ψpk′−k0

〉
We use the last two equations and proceed analogously to the inductive step of the
calculation of U t, getting

〈
eik0D̂

〉
t

=
∫ π

−π

dk

2π
∑
p,p′

〈
p
∣∣∣(U t

k)†U t
k∗

∣∣∣p′〉〈ψ(0)
∣∣∣ψpk〉〈ψp′k∗∣∣∣ψ(0)

〉
, (4.13)



Chapter 4. Staggered Quantum Walk 43

where k∗ = k + k0. Since in our case
∣∣∣ψ(0)

〉
=
∣∣∣0, 0〉, we have that

〈
ψ(0)

∣∣∣ψpk〉 = δp0. Thus
equation 4.13 becomes

〈
eik0D̂

〉
t

=
∫ π

−π

dk

2π
〈
0
∣∣∣(U t

k)†U t
k∗

∣∣∣0〉. (4.14)

The characteristic function is constructed in such a way that its n-th derivative with
respect to k0 evaluated in k0 = 0 is the n-th moment in time t. Therefore

〈
D̂n
〉
t

=
(
−i δ
δk0

)n 〈
eik0D̂

〉
t

∣∣∣∣∣
k0=0

=
∫ π

−π

dk

2π
〈
0
∣∣∣(U t

k)†
(
−i δ
δk

)n
U t
k

∣∣∣0〉 (4.15)

We define Λk =
[∣∣∣wpk〉] as the matrix 3× 3 with columns formed by the amplitudes of the

eigenvectors of Uk. Let D[aj ] be the diagonal matrix with entries a1, ..., an on the diagonal,
so Uk = ΛkD [λpk] Λ†k. Since ΛkΛ†k = I, we get

U t
k = ΛkD

[
(λpk)t

]
Λ†k.

Then we have
(
−i δ
δk

)n
U t
k =

(
−i δ
δk

)n (
ΛkD [(λpk)t] Λ†k

)
and using the product rule n

times we get (
−i δ
δk

)n
U t
k = ΛkD

[
tn(λpk)t

(
δ ln(λpk)
iδk

)n]
Λ†k +O(tn−1)

because
(
−i δ
δk

)n
eiαk = αneiαk and Λk and Λ†k are not t dependent. Using the last equation

in (4.15), using again ΛkΛ†k = I and D[aj]D[bj] = D[ajbj] we obtain

〈
D̂n
〉
t

= tn
∫ π

−π

dk

2π
〈
0
∣∣∣ΛkD

[(
δ ln(λpk)
iδk

)n]
Λ†k
∣∣∣0〉+O(tn−1) (4.16)

Therefore to calculate the standard deviation we need the eigenvectors and eigenvalues of
Uk.

4.3.2 The eigenvectors and eigenvalues

The matrix Uk has a shape that leads us to make use of algebraic computation.
We use the programs wxMaxima2 and Maple. It is very useful to simplify the matrix Uk
and calculate its eigenvalues.

Uk =


ak bk 0
bk ak 0
0 0 e−i2θ

 ,
2 wxMaxima is a document based interface for the computer algebra system Maxima
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where

ak = 1
9
(
4 + 5 cos(2θ)− 3i sin(2θ)− 8ei2k sin2 θ

)
,

bk = −−4
√

2i sin θ
9 (sin k sin θ − 6 cos k cos θ) .

The eigenvalues are

λ0
k = eiφk ,

λ1
k = e−iφk , (4.17)

λ2
k = −e−i2θ,

where
cos(φk) = 1− 2(8 cos2 k + 1) sin2 θ

9 .

We are interested in the derivative of ln(λpk) with respect to k. Note that λ2
k does not

depend on k so the diagonal matrix of equation 4.16 has a 0 entry in the lower right-hand
corner. Thus we can reduce our problem for matrices 2 × 2. The eigenvectors that are
important to us are

∣∣∣w0
〉

= 1√
c+
k


bk

eiφk − ak
0

 and
∣∣∣w1

〉
= 1√

c−k


bk

e−iφk − ak
0

 , (4.18)

where c±k = 2(1−R(ak) cos(φk)∓ I(ak) sin(φk)), R(ak) and I(ak) are respectively the real
and imaginary parts of ak.

As we want to compare our results of the simulations with the analytic expression,
we have to divide equation (4.7) by time t as we have done in Figure 21. We have that

σ(t)
t

=

√√√√〈D̂2〉
t2
−
(
〈D̂〉
t

)2

.

Using equations (4.16), (4.17) and (4.18) and making the integration on k we obtain

〈D̂〉
t

= 4
3 + 2

3 cos2 θ − 2
3 | cos θ|

√
cos2 θ + 8,

〈D̂2〉
t2

= 8
3 + 4

3 cos2 θ − 4
3 | cos θ|

√
cos2 θ + 8,

Thus,
σ(t)
t

= 2
3

√
2− 9 cos2 θ − 2 cos4 θ + | cos θ|

√
cos2 θ + 8(2 cos2 θ + 1)

In Figure 22 we plot the graph of the last equation and compare it with the results
of the simulations. As expected the numerical data has the same value of the analytical
expression. The value θ∗ that maximizes the standard deviation is

tan θ∗ = 3
√

3.
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Figure 22 – σ(t)/t as a function of θ. The blue curve is obtained from the analytic result
and the red diamonds are points observed from the simulations.
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5 Conclusion

In this work, we have studied some concepts of graph theory, such as the line graph
and the clique graph. These two concepts were very important to prove two theorems. The
next concept is the graph tessellation, which is a partition of the vertices of the graph,
such that each element of the partition is a clique. If two tessellations cover all edges of a
graph G then G is 2-tessellable. Another useful definition is the reduced subgraph, which
is a special subgraph of a multigraph. With this, we proved a lemma that was used to
show that a graph G is the line graph of a triangle-free (resp. bipartite) multigraph iff
K(G) is triangle-free (resp. bipartite). With this we expanded the characterization of the
2-tessellable graphs.

We have also presented coined walks, and described classical and quantum walks
on a line and on a general graph. In the classical case the walker tosses a coin, which
decides where he goes. So each step is probabilistic. In the quantum case, the walker is
in a superposition of positions and after the measurement, the position of the walker is
obtained randomly. In all these cases we have a probability distribution. In the line, we
have compared the expression of the standard deviation of the classical random walk with
the quantum walk. This expression is the same as the expected distance. We showed that
in the quantum case the particle walks faster, with a ballistic behavior.

We have also studied another model, the staggered quantum walk. It makes use of
the tessellation problem. Each tessellation is associated with a local operator. With this,
we define the evolution operator as a unitary operator. We define a tessellation cover of
the line of diamonds, which is 2-tessellable because its clique graph is bipartite. Thus we
can define the SQW on the line of diamonds. We used the computer program Hiperwalk
to simulate the SQW and have obtained the standard deviation for different Hamiltonians.
To verify this numerical data we have obtained the analytical expression of the standard
deviation. And, with that, we have obtained the best Hamiltonian, that is, U = eiθH1eiθH0 ,
where H0 and H1 are the local operators and θ satisfies tan θ = 3

√
3

For future works, we can obtain the expression of the standard deviation of more
general graphs. We can also obtain the expression of the hitting time. Finding the spectral
decomposition of 3-tessellable graphs is very helpful to find the standard deviation and
the hitting time on such graphs. Another framework is the tessellation problem, where we
want to characterize the 3-tessellable graphs.
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