
Learning Linear Operators by Genetic Algorithms

JEAN FABER� , RICARDO N. THESS�, GILSON A. GIRALDI �

�LNCC–National Laboratory for Scientific Computing -
Av. Getulio Vargas, 333, 25651-070 Petropolis, RJ, Brazil

�faber,rnthess,gilson�@lncc.br

Abstract. In this paper we consider the situation where we do not know a linear operator� but instead have only
a set� of example functional points of the form��� �� such that� ��� � �. This problem can be analysed from
the viewpoint of numerical linear algebra or learning algorithms. The later is the focus of this work. Firstly, we
present a method found in the literature to learn quantum (unitary) operators. We analyse the convergence of the
learning algorithm and show its limitations. Next, we propose a new method based on genetic algorithms (GAs).
We discuss the results obtained by the GA learning technique and compare the method proposed with traditional
approaches in the field of numerical solution of linear systems.

1 Introduction

The problem of finding a linear function� � �� � �
through a sample set� � ���� �� � � � � ���� is very
common in fields like signal processing [10], economy and
social sciences.

In practical applications, the challenge in general is
to find an algorithm which takes� as input and returns as

output a function
�

� which approximates��
From the point of view of Artificial Intelligence meth-

ods it can be considered as aninductive learning problem,
in which we want to learn a rule (the function�) from the
data set� [19].

Inductive learning may besupervised or unsupervised.
In the former, it is assumed that at each instant of time we
known in advance the response of the system (the function
� , in our case) [19, 7]. In the later, learning without super-
vision, we do not know the system response. Therefore, we
can not explicitly use the errors of the learning algorithm in
order to improve its behavior [19].

A common approach in this field is to minimize an
error function�. The optimization can be done by Random
searches (Metropolis, Genetic algorithms), gradient search,
second order search, among others [19].

A special class of problems arrises if the target func-
tion is a linear operator� � 	 � 	 , where	 is a real or
complex vector space of dimension��� �	 � �
.

Recently, the problem of estimating an unitary opera-

tor
�

� was formulated in the context of learning algorithms
by Dan Ventura [20]. The central idea follows the basic
methods in neural networks [2]: (1) Aguess operator is
chosen; (2) Atest to compare the obtained output with the
desired one ; (3) A rule to adapt parameters if need.

A special place for unitary operators is Quantum Com-
putation and Quantum Information [14, 16, 15]. In these

fields, the computation is viewed as effected by the evolu-
tion of a physical system, which is given by unitary opera-
tors, according to the Laws of Quantum Mechanics [14].

In this paper we focus on learning algorithms to esti-
mate a linear (unitary or non-unitary) operator�.

Firstly, we analyze the solution proposed in [20] for
the unitary case. We focus on the convergence of that learn-
ing algorithm and show its limitations.

Next, we propose a new solution by using genetic al-
gorithms. We discuss the advantages and difficulties of our
method. The main advantage is its generality: it can be used
to learn unitary and non-unitary linear operators. We com-
pare our results with the leaning method proposed by Dan
Ventura [20] and with traditional iterative methods [6, 17].

The paper is organized as follows. Next, we put our
basic problem in terms of error minimization and gives an
interesting and useful geometric interpretation 2. Section 3
shows the Dan Ventura ’s learning method for unitary oper-
ators [20]. We also discuss some properties and limitations
of this approach in section 3.2. Section 4 gives a briefly
introduction to genetic algorithms. Our implementation is
presented on section 5. In the experimental results (section
6) we analyze the efficiency of our GA algorithm to learn
operators defined on vector spaces of dimensions	,
, �
and�. We present a case which Dan Ventura ’s method can
not solve but our GA learning method does. We discuss
these results in section 7 and compare the computational
efficiency of the GA method with traditional numerical ap-
proaches (described on Appendix A). The final considera-
tions are given on section 8.

2 Problem Analysis

The problem we are in face is to find a linear
operator � � 	 � � given a sample set
� � ����� ��� � 	 � 	 � � ���� � ���
 �
� ������ �

If ��� �� � �� are the matrix representation of��� ��, re-
spectively, in some basis [8], then an equivalent problem is
to find� such that�� � ��� (� is a matrix representation
of the operator� [8]).

It might be convenient to rewrite this problem as an
optimization one. Specifically, let us consider the objective
function:

������
�� ��� �

��
���

���� � ���� � (1)

Then, the matrix we are looking for is the solution of
the following problem:

�

� � ����

� ���

where:

� ��� �

��
���

���� � ���� � (2)

To minimize the aboveObjective function , we have to
look for solutions of the equation:

	� ��� � �� (3)

It is interesting to observe that these solutions are the
stationary points of the system:

��

��
� �	� ��� � (4)

An interesting result comes from the analysis of this
problem when� is real. Let us consider the symmetric
matrix:

� ��� �

�
�����

���
���

��

���
��

��
��

��

��� ���
��

��
��

��

��
��������

���
���

��

��� ��
��������

��� ��� ��� ���
��

��������

��
��������

��� ���
���

��

�
����� �

(5)
called the Hessian of� (or the Jacobian of the field� �
	� ���)�Once� ��� is real and symmetric its eigenvalues
are all real.

If �� is a solution of equation (3) and if all eigenval-
ues of�� ��� are non-null and negative in��, then, by
Hartman’s Theorem [18], the system in expression (4) has
an attractor in��; that is, the solution of the initial value
problem:

��

��
� �	� ��� � � ��� � ��� (6)

is exactly�� if �� belongs to a neighborhood of��.

It is a dynamical interpretation of the very known fact
that if�� is a solution of equation (3) and if the eigenvalues
of the Hessian matrix� ��� are non-null and positive, then
� ���� is a local minimum and there is a basin of attaction
for any gradient-based minimization method. The solution
of equation (6) is a continuous version of a steepest descent
method starting from�� [3].

When � �
 in � and the vectors
����
 �
� 	� ����
� are linearly independent (LI),
then the optimization problem has only one solution (see
Property 2 in Appendix A). The same is true if� �
 but

there is a subset
�

�
 � with this property.
For any other case (� �
�� �
 but without a

linearly dependent set����
 �
� 	� ����
�), there will be
infinite solutions.

The above discussion is worthwhile to give us a geo-
metric interpretation of what is going when using GAs.

Let us consider that�� is the global minimum (only
one solution) and that the size of its basin of attaction is�Æ �
As we shall see later, the basic idea behind GAs is to search
for the solution by evolving a set ofcandidate through ge-
netic inspired operations. Thus, if��� �� (Figure 1) are two
such points, then the key idea is to design these operations
in such a way that the sons of��� �� will be better than their
parents; that is, closer the optimum. Thus, unlike steepest
descent methods, in which we have one point following a
solution of (6) we would have a set of candidates searching
for it. However, we have to pay a price due to storage re-
quirements and computational complexity. Later we shall
discuss the related trade-offs.

To simplify the presentation that follows, we are go-
ing to use the following nomenclature: We say that we
have anunderconstrained problem if � �
; a con-
strained/overconstrained problem if we � �
 or� �
,
respectively (
 is the dimension of the vector space).

3 Learning Quantum Operators

This section describes the learning method found in [20] in
the context of quantum operators. To let this paper self-
contained we introduce some background next.

The field of quantum computation is a promising area
posing challenges in fields of quantum physics, computer
science and information theory [14, 16, 15].

Quantum computation and Quantum Information en-
compass processing and transmission of data stored in quan-
tum states (see [15] and references therein). The process
can be viewed as effected by the evolution of a quantum
system which can be mathematically described by [14, 16]:

� � � � � � � � �
 ��
� (7)

where� is a complex, finite dimensional Hilbert space (an
inner product vector space which is complete with respect

Figure 1: Genetic algorithms can take two parents,!� and
!� for instance and generate a point!��� closer than the
optimum despite the fact that they may be out of the at-
traction basin. Steepest descent fails if point!� does not
bellongs to the attraction region.

to the norm defined by the inner product [4]),� is a linear
and unitary operator, and the pair�� �
� �
� represents the
initial and final state, respectively, of the physical system.
The notation� � �
� ,for a vector, is theDirac notation
which is standard in quantum mechanics.

The inner product will be also represented inDirac
notation, as follows:

�� �
� �
� � � �� �
"

�� ��#����

�� �
 � $�

where$ is the set of complex numbers and the function�� �
�
 follows the usual properties of inner products in complex
vector spaces [4, 14].

In this context, the Dual to the vector� �
 is denoted
by �� �. This functional is defined as follows:

�� � ��
� � �� �
� � �
 � ��

It can be shown that, if�%�� %�� ���� %����
	 is the matrix

representation of� �
 with respect to some orthonormal ba-
sis, then

�
%�� � %

�
� � ���� %

�
���
	

is the matrix representation of
the Dual�� � with respect to the corresponding Dual basis.

If �%�� %�� ���� %����
	
� �&�� &�� ���� &����

	 are the ma-
trix representations of� �
 and�
with respect to the same
basis of� then the (standard) inner product of� �
 and�

can be calculated by:

�� �
 �
����
���

%�� &� �
�
%�� � %

�
� � ���� %

�
���
	
�
�����
&�
�
�
�
&���

�
����� �

3.1 Learning Algorithm

If we do not know an operator� � 	 � 	
but insteady we have a set of functional points� �
��� ��
� � �
� � � � ��
 �� �
�
 � ��
� ����
� � where
��� �	 � �
, also called thelearning sequence, we can
hypothesize a function' such that�' � ��
� � �
� �� �
(as usual,�� �
� �

�� � �
 is the norm induced by the
inner product).

The method proposed in [20] to find' is based on a
supervised learning algorithm.

Let ��
 denotes the component(of the matrix repre-

sentation of the vector� ��
 (equivalently for �
� and

�

 ��).
The method can be summarized as follows:

Initialization: Random Unitary Operator '� and�
For
 � �� �����

....Calculate '� � ��
 ��
�

 �
�
...Update' as

......)����
 �)��
 � Æ

�
 ���

�

 ��

�
��
�

This algorithm is classified as supervised because at
each interaction we known in advance the desired response.

As an example, we will consider the case studied in
[20], where the set� and the operator'� are given by:

� �

���
���

�
��
	

�
	

�
� ��

��

�

��
�

��
��

� �	
�

�
� ��

��

�
	
��

��
����
��� � (8)

'� �

�
�

�
 �

�
�

Applying the first step of the algorithm we get:

'� � ��
 ��
�

 �
 �
�

�

�
 �

�

�
�

�
	

�
� (9)

�
�

�

�	

�

If Æ �
, the update rule gives:

)��� �)��� �

�
 ���

�

 ��

�
��� � (10)

� �

�

�

�
�
�

�

�
	�
�
� ������

Calculating the rest of matrix entries in a similar way
we obtain the first update of' �

'� �
�

�����
�		�
����
 ����

�
� (11)

By repeating the process by taking the second pair�� �
�� �
�� of � we find the desired result:

'� �
�

����� �����
����� ������

�
�
�

	

�

 �

�
� (12)

which is the very known Hadamard Transform [14].
Despite of the success of Ventura’s learning rule for

this example, the way the algorithm works is not obvious.
Besides, we need to characterizes the conditions to assure
that the target will be found.

Next, we discuss the theory behind the algorithm and
prove basic properties. That is the first contribution of this
paper.

3.2 Convergence Analysis

Firstly, we must observe that, if� is a set of real vectors,
like in the above example, the updating rule can be rewritten
as:

'��� � '� � Æ

�
� �
� �

�

 �

�
��� �� (13)

where we are using the fact that �
� is the component� of

the matrix representation of vector� �
. The same for��

and the Dual��� � (we are considering real vectors).

Thus, from the above equation, the application of' ���

to the state� ��
 gives:

'��� � ��
 � '� � ��
� Æ

�
�
�� �

�

�
�
��� � ��
� (14)

In Quantum Mechanics, every state� ��
 is normal-
ized. Therefore, we have��� � ��
 �
. Thus, equation
(14) becomes:

'��� � ��
 � '� � ��
� Æ

�
� �
� �

�

 �

�
� (15)

But, from Ventura’s algorithm we have' � � ��
 ��
�

 �

. If we setÆ �
, we find that expression (14) becomes:

'��� � ��
 �� �
� (16)

But, by hypothesis, we know that there is an operator
' such that' � ��
 �� �
. This fact, added to the last
equation, produces:

'��� � ��
 �� �
� (17)

' � ��
 �� �
� (18)

By subtraction these equations we find:

�
'�'���

� � ��
 � � ��� ��
 � ���
�*
�
'�'���

�
�

(19)
From this result, it comes out the following constraints:

�
'�'�

� � ��
 � �� (20)

�
'�'�

� � ��
 � �� (21)

obtained by taking
 � � and
 �
, respectively, in expres-
sion 19.

Now, we shall return to equation (13) and remember
that we have setÆ �
. Equation (13) becomes:

'� � '� �

�
� �
� �

�

 �

�
��� � � (22)

which can be rewritten in the form:

'� �'� �

�
� �
� �

�

 �

�
��� � � (23)

Applying to � ��
 both sides of this equation we find:

�
'� �'�

� � ��
 �
�
� �
� �

�

 �

�
��� � ��
� (24)

If � �
� and� �
� are orthogonal then��� � ��
 � �
and equation (24) becomes:

�
'� �'�

� � ��
 � �� (25)

Thus, from this result and the equation (20) we get:

�
'�'�

� � ��
 � ���
'� �'�

� � ��
 � ��

Finally, by subtracting the second expression from the
other we found that:

�
'�'�

� � ��
 � � ��� ��
 � ���
�*
�
'�'�

�
�

(26)
Hence, from expression (19) and (26) it follows im-

mediately that' � '�. We shall remind that we have sup-
posed that the vectors� �
�, � �
�are unitary and orthogo-
nal. Therefore, we have proved the following property:

Property 1: If �� ��
� � ��
� is a set of real vectors
comprising an orthonormal basis of a bidimensional Hilber
space� and Æ �
 , then the algorithm of section 3.1 gives
the unknown operator ' after two interactions.

This result can be generalized for dimension
 � 	.
Now, it is clear why the algorithm gives the exact so-

lution for the example of section 3.1. It is just a matter of
observing that:

�� �
��	 � ��
 �
�
	�

� �	 �
	
�

�

�
	

�
� �� (27)

and to notice that�� ��
� � �� ��
� �
. Therefore, we
have the conditions above stated and the property is veri-
fied.

But, what happens if��� � �
� �� �? This is discussed
in the following example. We changed the set� but kept
the initial guess'� used above:

� �

���
���

�
��
	

�

	

�
� ��

��

�

�

��
�

��
�

�

�
� ��

�

�
	
�

��
����
��� � (28)

'� �

�
�

�
 �

�
�

The correct result is the Hadamard gate again (matrix
(12)). However, set

�� �
�� � �
�� is not an orthonormal
basis. The result obtained after two interactions is:

'� �

�
��	��
���
�
���	�
��������� ��������

�
� (29)

which is far from the target.
This unsuccessful test shows that the conditions to as-

sure correctness (Property 1, above) are restrictive even for
the Quantum Mechanics (the operator to be learned and the
vectors are unitary ones).

In this paper, we look for a more general supervised
learning algorithm, which could overcome these limitations.
We try to find out such method in the context of Genetic Al-
gorithms. Next section gives a briefly introduction to this
area.

4 Evolutionary Computation and GAs

In the 1950s and the 1960s several computer scientists in-
dependently studied evolutionary systems with the idea that
evolution could be used as an optimization tool for engi-
neering problems. The idea in all these systems was to
evolve a population of candidate solutions for a given prob-
lem, using operators inspired by natural genetic and natural
selection.

Since then, three main areas evolved: evolution strate-
gies, evolutionary programming, and genetic algorithms.
Nowadays, they form the backbone of the field of evolu-
tionary computation [13, 1].

Genetic Algorithms (GAs) were invented by John Hol-
land in the 1960s [9]. Holland’s original goal was to for-
mally study the phenomenon of adaptation as it occurs in
nature and to develop ways in which the mechanism of nat-
ural adaptation might be imported into computer systems.
In Holland’s work, GAs are presented as an abstraction
of biological evolution and gave a theoretical framework
for adaptation under the GA. Holland’s GA is a method
for moving from one population ofchromosomes to a new
one by using a kind ofnatural selection together with the
genetics-inspired operators of crossover and mutation. Each
chromosome consists ofgenes (bits in computer represen-
tation), each gene being an instance of a particularallele (�
or
).

Traditionally, these crossover and mutations are imple-
mented as follows [9, 13].

Crossover: Two parent chromosomes are taken to pro-
duce two child chromosomes. Both parent chromosomes
are split into left and a right subchromosomes. The split po-
sition (crossover point) is the same for both parents. Then
each child gets the left subchromosome of one parent and
the right subchromosome of the other parent. For example,
if the parent chromosomes are 011 10010 and 100 11110
and the crossover point is between bits 3 and 4 (where bits
are numbered from left to right starting at 1), then the chil-
dren are 01111110 and 100 10010.

Mutation: : When a chromosome is chosen for mu-
tation, a random choice is made of some of the genes of
the chromosome, and these genes are modified. The corre-
sponding bits areflipped from � to
 or from
 to �.

Next we present the basic definitions of the genetics-
inspired operators for a real-coded GA, that is, for the case
where the alleles are real parameters [21]. The algorithm
proposed in [21] is a generalization of the� �
 case. It is
useful as an introduction for our GA implementation (sec-
tion 5).

4.1 Real-Coded Genetic Algorithm

The context of our interest is Genetic Optimization Algo-
rithms. Simply stated, they are search algorithms based on
the mechanics of natural selection and natural genetics and
are used to search large, non-linear search spaces where ex-
pert knowledge is lacking or difficult to encode and where
traditional optimization techniques fall short [5].

To design a standard genetic optimization algorithm,
the following elements are needed:

(1) A method for choosing the initial population;
(2) A ”scaling” function that converts the objective

function into a nonnegative fitness function;
(3) A selection function that computes the ”target sam-

pling rate” for each individual. The target sampling rate of
an individual is the desired expected number of children for
that individual.

(4) A sampling algorithm that uses the target sampling
rates to choose which individuals are allowed to reproduce.

(5) Reproduction operators that produce new individ-
uals from old ones.

(6) A method for choosing the sequence in which re-
production operators will be applied

For instance, in [21] each population member is rep-
resented by a chromosome which is the parameter vector
� � ���� ��� ���� ��� � ��, and genes are the real parame-
ters.

When alleles are allowed to be real parameters, some
care should be taken to define these operators.

Mutations can be implemented as a perturbation of the
chromosome. In [21] authors chosen to make mutations
only in coordinate directions instead of to make in�� due
to the difficult to perform global mutations compatible with
the schemata theorem (it is a fundamental result for GAs
[9, 5]).

Besides, the crossover in�� may also have problems.
Figure 2 illustrates the difficult. The ellipses in the figure
represent contour lines of the objective function. A local
minimum is at the center of the inner ellipse. Points���� ���
and ���� ��� are both relatively good points in that their
function value is not too much above the local minimum.
However, if we implement a traditional-like crossover (sec-
tion 4) we may get points that are worse than either parents.

Figure 2: Crossover can generate points out of the attraction
region.

To get around this problem, in [21] was propose an-
other form of reproduction operator that was called linear
crossover. From the two parent points�� and�� three new
points are generated, namely:

	
��� � ��� �

	
�� �

	
��� �

	
�� �

	
���

The best two of these three points are selected.
Inspired on the above analysis we propose the algo-

rithm of section 5 to learn a linear operator from a set�

of example functional points. It is the main contribution of
this paper.

5 GA for Learning Operators

In our implementation, each population member (chromo-
some) is a matrix� � ����, and alleles are real parame-
ters (matrix entries). Up to now, the alleles are restricted to
��
�
� despite of the fact that more general situations can
be implemented.

We consider two different strategies to generate the
initial population: (a) All chromosomes are randomly gen-
erated; (2) The first member receives a seed. Then other
ones are randomly chosen.

Once a population is generated, a fitness value is cal-
culated for each member. The fitness function is defined
by:

�
�
�++ ��� � ��� �����#� ���� � � � ����� (30)

where the error function is defined as follows. Let the learn-
ing sequence� � ��� ��
� � �
� �
 �
� ������ , then:

���#� ��� �

 ��
��
���

�� � ��
� � �
�� � (31)

where���
�

denotes the 1-norm of a� � ���� ���� ���, de-
fined by:���

�
� ����� ���� ���� �

Once the fitness is calculated for each member, the
population is sorted into ascending order of the fitness val-
ues. Then, the GA loop starts. Before enter the loop de-
scription, some parameters must be specified.

Elitism: It might be convenient just to retain some
number of the best individuals of each population (mem-
bers with best fitness). The other ones will be generated
through mutation and/or crossover. This kind of selection
method was first introduced by Kenneth De Jong [11, 13]
and can improve the GA performance.

Selection Pressure: The degree to which highly fit in-
dividuals are allowed many offsprings [13]. For instance,
for a selection pressure of��� and a population with size
, , we will get only the��� �, best chromosomes to apply
genetic operators.

Mutation Number: Maximum number of alleles that
can undergo mutation. Like in [21], we do not choose
to make mutations (implemented as perturbations also) in
����. We randomly choose some matrix entries to be per-
turbed.

Termination Condition: Maximum number of genera-
tions.

Mutation and Crossover Probabilities:!� and!�, re-
spectively.

The crossover is defined as follows. Given two parents
� � �-�� � and. � ���� � , randomly chose one of them.
Next, take its
� component value and put it on� �� . Once a
soon is completed, the next offspring is created in the same
way. Thus, we finally gave:

��. �
$�#++#���

$�� $�

The mutation is implemented as a perturbation of the
alleles. Thus, given a member�, the mutation operator
works as follows:

� �
/��-�
#

���

where� is a perturbation matrix. The mutation number es-
tablishes the quantity of non-null entries for�� They are
defined according to the mutation probability and a pre-
defined Perturbation Size, that is, a range�-� �� � �, such
that- � ��� � �.

Once the above parameters are pre-defined and the in-
put data (set�) is given, the GA algorithm proceed. In the
following pseudo-code block,! ��� represents the popula-
tion at the interaction time� and, is its size. ,)�
 is
the maximum number of generations allowed, the proce-
dure��-*�-�� �#�� calculates the fitness of each individ-
ual and sort the chromosomes into ascending order of the
fitness values. The integer,� defines de elite members,
the parameter!+ � ���
� defines the selection pressure and
,� the number of matrix entries that may undergo muta-
tions.

Procedure Learning-GA
begin
........�� �;
........initialize! ���;
........while(� � ,)�
) do

begin
................�� ��
;
................��-*�-�� �#�� �! ���
��;
................Store in! ��� the,� best members of! ���
�;
................Complete! ��� by crossover and mutation over
the best!+ �, members of! ���
�;
......end
end

Some specific details of the genetic operators imple-
mentation shall be explained for completeness.

When applying a crossover; firstly, two members of
! ���
� are randomly chosen. A random number between
� and
�� is selected. If the crossover probability iguals or
exceeds this number, then the genetic operator is applied.
When crossover does not happens, the offsprings become a
copy of the parents.

Now, mutation is applied. Again, a random number is
generated and its value compared with the mutation proba-

bility to decide if mutation happens. If applied to a individ-
ual�, we randomly chosen,� elements of A and apply a
perturbation-�� � -�� � ��� for each one. In our imple-
mentation crossover and mutation are independent events
in the sense that!� and!� do not depend on each other.

Finally, if we have complex entries in�, thus a com-
plex operator� to learn, we can at first, apply the some core
of the GA algorithm stated but now we have to consider
that chromosomes are complex matrices that will undergo
crossover and mutations in complex space. We must em-
phasize that further analysis should be made to assure the
correctness of such scheme.

6 Experimental Results

The first point we focus in this section is the behavior of the
algorithm against operator dimension.

Thus, we apply the method to learn two, three, four
and six dimensional linear operators. This section reports
the results obtained. Parameters values are reported on Ta-
ble 1. They were described on section 5.

We observe that only the associated probabilities re-
main unchanged during all over the experiments.

Matrix ,)�
 , !� !� !+ ,� ,�
	� 	
�� 	�� ���� ���� ��
�
�

	� 	 	�� 	�� ���� ���� ��
�
�

�

�� 	�� ���� ���� ��
�
� 	

�

��
�� ���� ���� ��
�
� 	
�� �
��
�� ���� ���� ��
�
� 	
�� �
��� 	�� ���� ���� ����
�

�� � 		�� 	�� ���� ���� ����
�

Table 1: Parameters used in this section.

To improve convergence, we take the following rule:
if the best member ’s error is smaller than a user definedÆ,
than the upper bound for the perturbation is changed. This
is an application dependent rule and will be specified case
by case.

Besides, we added a constraint that the matrix ele-
ments belongs to the range��
�
�. This is a user defined
range that should be set according to some prior knowledge
about the desired operator.

As a performance measure of the genetic algorithm we
collected the error of the best fitted member found within
the maximum number of generations, over	� runs. The
error is calculated according to expression (31).

We checked the elapsed time per one run when using
a Pentium-III 866MHz, 524 RAM, running Borland Delphi
5.

6.1 Operators in 2D

In this section we analyze the behavior of the GA for the
same examples of section 3.1. It is reproduced bellow.

The set� and is given by:

� �

���
���

�
��
	

�
	

�
� ��

��

�

��
�

��
��

� �	
�

�
� ��

��

�
	
��

��
����
��� � (32)

The result over 25 runs was always the correct one
(Hadamard Transform in expression 12). The set of pa-
rameters is given in the first line of Table 1 (above). The
perturbation size is given by�����
� ��
�.

Figure 3 shows the error evolution over	� runs. We
collect the best population member (smallest error) for each
run and take the mean value, for each generation, over the
	� runs. It suggests that the algorithm learns very fast and
stabilizes itself during its execution. Indeed, this behavior
was observed for all experiments we did.

Figure 3: Error evolution over	� runs for Ventura’s exam-
ple.

The next 2D example is given by the same set S used
in 28:

� �

���
���

�
��
	

�

	

�
� ��

��

�

�

��
�

��
�

�

�
� ��

�

�
	
�

��
����
��� � (33)

As we already explained on section 3.2, Ventura’s al-
gorithm [20] was not able to learn the operator because the
set� do not agree with the Property 1.

Our GA algorithm was able to deal with this case.
The second line of Table 1 shows the parameters used.

We decided to keep all parameters of Example 1 unchanged
but the number of generations (,)�
) had to be increased
to achieve the correct result. This point out that our GA
method may be sensitive to Property 1, despite that it learns
correctly. Further analysis should be made to reinforce (or
not) this observation.

Figure 4 pictures the mean error evolution. It decays
fast but take some time to become null.

Figure 4: Error evolution over	� runs when the set� do not
agree with Property 1. Picture shows that the error decays
fastly.

It is important to emphasize the fact that GAs, by their
random nature, can result in different outcomes. For in-
stance, if we pictures the evolution of the best population
member for two runs, it is possible that the results are dif-
ferent.. However, it is expected that the result always is cor-
rect. Fortunately, Figures 3,4 show that we have achieved
this goal.

6.2 Three-Dimensional Matrix

In this case, we explore not only a higher dimension prob-
lem but also the possibility of learning in face of an un-
derconstrained three-dimensional problem; that is, we have
only two input vector pars����� ��� � ���� ���� to learn a
three-dimensional operator.

The number of solutions gets larger (it is infinite). How-
ever, the prior information is incomplete. We expect some
trade-off between these elements.

Before analyzing algorithm efficiency, we will con-
sider a case for which there is only one solution. Than, the
analysis of the underconstrained case will be more effective
.

The set� and the desired matrix are given by:

� �

�������������
�������������

�
�
�
�
��

	��

��

�
� �
�
� ��
�

���	
	�
�

�
�
�
� �

�
�
�
� ����

����
����

�
� �
�
�
��

��
�

��

�
�
�
� �

�
�
�
� ��
�

����
��	�

�
� �
�
� ����

��

��
�

�
�
�
�

��������������
�������������

� (34)

and

� �

�
� ���� ���� ����

��	� ��	� ���	
���� ���� ����

�
� � (35)

respectively.
The parameters used are those ones given by the third

line of Table 1 plus a perturbation size defined by the range
���
� ��	�.

We observe that we had to increase,)�
 and,� to
get the algorithm learns correctly. It is possible the set of
parameter values used is not the optimum one. However, re-
member that we aim to show stability of parameters against
problem dimension. That is way we keep the parameters
unchanged as much as possible.

Figure 5 shows the mean error evolution over	� runs.
Let us consider now the learning process when we take

a subset of
�

� of �. In this example, we choose the first two
vector pairs of�. Figure 6 shows the error evolution.

The set of parameters is given by the fourth line of
Table 1 plus the same perturbation size of the constrained
case (���
� ��	�).

If compared with the constrained case, we observe that
we had to increase the population size but the number of
generations is smaller than that one for the constrained test.
As we expect, there is a trade-off between the increase of
candidate solutions and the fact that we are less able to
properly evolve the populations due to the lack of prior in-
formation.

6.3 Four-Dimensional Matrix

The set� and the matrix� are respectively given by:

Figure 5: Error evolution over	� runs for constrained 3D
case. Like in the previous examples, this figure shows a fast
decay for the error.

Figure 6: Error evolution over	� runs for unconstrained 3D
case. Like in the previous examples, this figure shows a fast
decay for the error.

� �

�����������
�����������

�
 �
�
���

	

�

�
��� �
�
���

	

�

�
���
�
!!� �

�
 �
�
���

�
�
�

�
��� �
�
���

�
�
�

�
���
�
!!� �

�
 �
�
���

�
	
�
�

�
��� �
�
���

	
�
�
�

�
���
�
!!� �

�
 �
�
���

	
�
�
�

�
��� �
�
���

�
�
	
�

�
���
�
!!�

������������
�����������

�

(36)
and:

� �

�
���

�
 � �
� �
 �

 � � �
� � �

�

�
���

Matrix � is a permutation matrix. It permutes the in-
put vector entries, as we can verify through the set� above.
Thus, our GA algorithm has an� � � unitary operator to
learn.

The parameters used are reported on Table 1 with a
perturbation size defined by the range����	� �����. This is
the best result we get. Indeed, the algorithm learns correctly
and the number of generations and the population size are
smaller than for any other case studied. Figure 7 shows
mean error evolution. It follows the same pattern of previ-
ous examples

Figure 7: Error evolution over	� runs during the learning
of a�� � matrix.

6.4 Six Dimensional Case

The following example shows a challenge for our GA learn-
ing method. When the dimension increases parameters choice

becomes a difficult task.
The set� and the target matrix are the next ones:

� �

���
���

�
 �

�
�������

��
�
��

��
�
��

��
�
��

�
�������
�

�
�������

	��
���

�
��
�
��

��
����

�
�������

�
!!!!!!!!!!!!!!!!!!�

�

�
 �

�
�������

���
���
���
���
���
���

�
�������
�

�
�������

�	�
	��
�����

���

���
	�	�

�
�������
�

�
!!!!!!!!!!!!!!!!!!�

�
 �

�
�������

����
����
����
���

���

����

�
�������
�

�
�������

���

�
���
���

�����
�
���
�
���

�
�������

�
!!!!!!!!!!!!!!!!!!�

�

�
 �

�
�������

	��

��

�	
�
��
�
��

��

�
�������
�

�
�������

�
�	�
����	
�
���

��	
�
�
�
���

�
�������
�

�
!!!!!!!!!!!!!!!!!!�

�
 �

�
�������

��	

��
���
���
���
��

�
�������
�

�
�������

���
	��

��	�
����

�	�

���

�
�������

�
!!!!!!!!!!!!!!!!!!�

�

�
 �

�
�������

���	
���
����
���
����
���

�
�������
�

�
�������

�
�
�
��	

����
����
�����
���

�
�������

�
!!!!!!!!!!!!!!!!!!�

�

�
 �

�
�������

�	��

��
���

�	
���

���

�
�������
�

�
�������

�����
����

�
�

����

���
����

�
�������

�
!!!!!!!!!!!!!!!!!!�

�

�
 �

�
�������

���
�
��
���
�	��
����
����

�
�������
�

�
�������

���
�����
��	�
�
���
��	�
�
����

�
�������

�
!!!!!!!!!!!!!!!!!!�

��
���

�

� �

�
�������

��� ��	 ��
 ���
�� �
��
��

�� ��� ���
�� ��

�
�� ���	 ��� ��� �
�� ����
���
 ��	 ��� ��
 ���
 ���
��� ���	 ��� ��� ��� ���
��� ��
 ��
 ��� ���
��

�
�������
�

This is an overconstrained problem as the number of
functional points in the set� � ����� ��� �
 �
� ���� �� is
bigger than the space dimension.

We did two experiments: Firstly, we take the first six
ones (constrained case). Next, we take all pair in� (over-
constrained case).

Unfortunately, we were not able to find out an opti-
mum parameters set. For both testes, the algorithm were
not able to learn correctly.

The solutions obtained for the first and second testes
are, respectively, given by:

�� �

�
�������

��� ��	 ��
 ���
�� �
��
��

�� ��� ���
�� ��

���� ��� ��� ��� ���� ����
���
 ��	 ��� ��
 ���
 ���
��� ���	 ��� ��� ��� ���
��� ��� ��
 ��� ��� ���

�
�������
��

�� �

�
�������

��� ��	 ��
 ���
�� �
��
��� ��� ��� ��� ��� ���
�
�� ��� ��� ��� ���� ����
���
 ��	 ��� ��
 ���
 ���
��� ���	 ��� ��� ��� ���
��� ��
 ��
 ��� ���
��

�
�������
�

where we have written in bold the matrix elements that are
different from the desired one.

The result is not far away from the desired one. The
errors for�� and�� are���	
� and������, respectively.

The convergence is faster for the constrained case, an
unexpected result if considering that we have less prior in-
formation than for the overconstrained one. Figures 8.a and
8.b may be useful to understand this behavior. They picture
the mean error evolution.

Again, it is emphasized a feature of our GA learning
method. We observe that the error decays fastly but be-
comes almost unchanged during a long time later. The fac-
tors behind this problem may be the reasons the method
fails in this case. We will discuss this point later.

The sixth and seventh lines of Table Table1 give the
parameters used. Besides, we take a perturbation size given
by the range���
� ��	�.

(a)

(b)

Figure 8: Error evolution over	� runs during the learn-
ing of a � � � matrix. (a) Constrained problem.
(b)Overconstrained case.

7 Discussion

Table 1 shows that the associated probabilities remained un-
changed for all experiments. It is a desired property because
it reports to some kind of generality.

The number of generations seems to increase when
space dimension gets higher. The increase rate must be con-
trolled if we change the population size properly. However,
such procedure could be a serious limitation of the algo-
rithm for large linear systems.

Moreover, the clock time for one run is very acceptable
(� ���� seconds). The behavior for underconstrained prob-
lems is also an advantage of the method, if compared with
traditional ones. In this case, matrix methods (Appendix
A) can not be applied without extra machinery because the
solution is not unique [6].

The comparison with Dan Ventura ’s learning method
(section 3.1) shows that our method overcomes the limita-
tion of the later: we do not need any of the hypothesis stated
in the Property 1 of section 3.2.

However, when using our GA method, we pay a price
due to storage requirements and computational complexity.

Dan Ventura’s algorithm as well as numerical meth-
ods, GMRES (Appendix A), have a computational cost asymp-
totically limited by�

�

 �
�� while our GA method needs

�
�
,)�
 �, �
�� float point operations.

On the other hand, for traditional numerical matrix
methods and Ventura’s algorithm, we observe a storage re-
quirements of�

�

�
�
. Thus, the disadvantage of our method

becomes clear.
However, if compared with iterative methods, our al-

gorithm is in general less sensitive to roudoff errors [6].
This is due to unlikely numerical methods, that try to fol-
low a path linking the initial position to the optimum (for
steepest descent methods, the integral solution of the prob-
lem (6)), our GA algorithm searches the solution through a
set of candidates.

To improve the convergence we believe that we need
better evolutionary (crossover/mutation) strategies. The be-
havior pictured on the Figures of section 6 for the error evo-
lution indicates that our implementation for the genetic op-
erators is nice to get closer the solution but not to complete
the learning process. Further analysis should be made to
improve these operators.

Besides, there is an important point that we must con-
sider.

The problem we are in face is essentially a liner one
for which traditional methods (Appendix A) are efficient to
deal. Thus, would it be a nice idea to use GA?

The following text extracted from [12] can help the
discussion about this:

”The key point in deciding whether or not use genetic
algorithms for a particular problem centers around the ques-
tion: what is the space to be searched? If that space is well-

understood and contains structure that can be exploited by
special-purpose search techniques, the use of genetic algo-
rithms is generally computational less efficient.[12]”

Up to now, we shall say that our results have verified
this observation.

However, in practice, traditional methods may have
problems due to the sensitivity of the linear system solu-
tion against roudoff errors [6] and can not solve the under-
constrained case without extra techniques. If an effective
GA representation of that space can be developed then we
can improve our results and our research will become more
worthwhile. These are further directions for this research.

8 Conclusions

This paper reports our researches for genetic algorithms in
the context of learning operators. This work was inspired
in learning methods applied to quantum (unitary) operators
[20].

Our GA learning method overcomes the problems found
in [20]. However, we have to pay a price in terms of com-
putational complexity and storage requirements.

We observe that our method have problems when the
dimension increases because parameters choice becomes a
difficult task We believe that we need a more effective GA
representation of that space/problem to achieve the target
efficiently. Up to now, our method is barely nice if com-
pared with the traditional numerical ones (Appendix A).

9 Appendix A: Iterative Methods

As we already said, the proposed problem can be viewed as
solution of a linear system. The simple example of section
3.1 is useful again.

We are looking for a matrix:

� �

�
-�� -��
-�� -��

�
� (37)

knowing the set�, that is:

� � ��
 �� �
�
 � ��
� (38)

By substituting the pairs of� (expression (8)) in this
equation we find the following linear system:

	�
�
-�� �

�
�
-�� � �-�� � �-�� �

�

�
� (39)

�-�� � �-�� �
	�
�
-�� �

�
�
-�� �

�

�
� (40)

� 	�
	�
-�� �

��
	�
-�� � �-�� � �-�� �

	�
��
� (41)

�-�� � �-�� � 	�
	�
-�� �

��
	�
-�� � � ��

��
� (42)

which can be represented in the following matrix form:

�� � �� (43)

where:

� �

�
����

��
	

��
	

� �

� � ��
	

��
	

� ��
��

��
��

� �

� � � ��
��

��
��

�
���� � (44)

� �

�
���
-��
-��
-��
-��

�
��� � � �

�
����

��
��
��
��
��
��

�
�
��

�
���� � (45)

Once the input vectors�� ��
� � ��
� are LI, the sys-
tem (38) has only one solution. This property can be easily
demonstrated as follows. We are going to consider the gen-
eral case because it is not worthwhile to be restricted to the
bi-dimensional one.

Property 2: If � � ��� ��
� � �
� �
 �
� ����
� is
such that the set of input vectors�� ��
�
 �
� ����
� is
an orthonormal basis of a n-dimensional Hilber space � ,
then the linear system given by the equations � � ��
 ��
 �
�
 �
� 	� ����
, has only one solution for arbitrary
output vectors� �
.

Demonstration. Let us rewrite the linear system in the
equivalent form:

� �� ��
� � ��
� ���� � ��
� � �� �
� � �
� ���� � �
� �

Thus, taking the transpose for both sides of this equa-
tion we have:

�� ��
� � ��
� ���� � ��
�	 �	 � �� �
� � �
� ���� � �
�	 �

This is the linear system to be solved, considering that
the unknown variables are the elements of the matrix�.
From the standard results in linear algebra ([6]), if�� � �
�
 �
� ����
�
is LI, the system has only one solution�.

For a more general set�, we can return to section and
rewrite this problem as an optimization one given by:

�

� � ����

� ��� � (46)

where the functional� ��� is defined by expression (2):

� ��� �

��
���

���� � ���� �
��
���

���� � ���
	 ����� � ��� �

(47)
This is a least squares problem [6]. By expanding ex-

pression (47) it is straightforward to show that the problem
(46) is equivalent to the following one:

�

� � ����

��
���

�
�	� �

	��� � �	� �
	 �� � �	� ���

�
�

which in turn can be rewritten using the tensor product [10]:

�

� � ����

��
���

�
�	� � �	� ��

	��� 	�	� � �	� ��
	 �
�
�

where��� means the vector whose elements are the coeffi-
cients of the matrix between the brackets sorted according
to matrix rows.

Thus, like in expression (3), we have to find out a ma-
trix �, such that

	
"

��
���

�
�	� � �	� ��

	��� 	�	� � �	� ��
	 �
�#

� �� (48)

The so obtained linear system can be solved by direct
or iterative methods [6]. It will be equivalent to the linear
system (43) if� is given by (8).

By Direct Methods we mean linear equation solvers
that require the factorization of the matrix�. Gaussian
elimination, LU decomposition, are very known examples
of that class of methods. The computational cost of these
methods is�

�

�
�

where
 is the dimension of the vector
space.

However, we must observe that� in expression (43)
has some sparsity as
�0	 entries are zero. It is simple to
conclude that this property is true for
 � 	. The same
is true for the linear system corresponding to the problem
(48).

It is important to use methods which takes in account
this property. That is way we should consider iterative meth-
ods.

These methods generate a sequence of approximate
solutions

�
�

�

and do not involve factorization of matrix
� [6]. The advantage of these methods is to preserve the
sparsity.

The following theorem is central in this field. It’s demon-
stration is simple and is included for completeness (see [6]
for more details).

Theorem: Suppose� � �� and� �/ �, � ����

a nonsingular matrix. If/ is nonsingular and the spectral

radius of/��, satisfies1
�
/��,

�
�
, then the iterates

�
 defined by/�
�� � ,�
 � � converge to� � ����
for any starting vector��.

Demonstration: Let�
 � �
 � � denotes the error in
the k-th iteration.. The fact that/� � ,� � � together
with the recursive relation implies that :

/�
�� � ,�
 � �

/� � ,�� �

Subtraction the second equation from the first one gives:
/
�
�
�� � �

�
� ,

�
�
�� � �

�
. Thus:

�
�� �/��,�
 �/��,
�
/��,�
��

�
� �� �

�
�
/��,

�

���

Since we are considering1
�
/��,

�
�
 it follows

that
�
/��,

�
 � � if (� �� �.
In the area of iterative methods the development of al-

gorithms typically follows the following steps:
(1) A splitting� � / �, is proposed such that the

iteration matrix' � /��, satisfies1
�
/��,

�
�
; (2)

Further results about1 �'� are established to gain intuition
about how the error�
 tends to zero.

Performing these steps have also some computational
cost which depends from the specific problem. Besides the
convergence rate is problem dependent.

A simpler way to avoid these problems can be de-
signed when the matrix� is symmetric and positive defi-
nite (all eigenvalues are non-null and positive). In this case,
the above theorem can be used to show that the iteration
scheme (Gauss-Seidel iteration):

For(� ��
� 	���
For
 � �� ����
�

�
��� �

$
�� �

%���
��� -���

��
� �%���

����� -���

�

&
-��

� (49)

converges for any�� [6].
These methods need special structures for matrix��

If � � ���� is nonsingular then�	� is also nonsinglar,
symmetric and positive definite. However, the linear sys-
tem�	�� � �	 � may becomes ill-conditioned and thus
numerical instabilities take place [6].

Another problem is that we do not have a bound for the
number of iterations.. Gradient Conjugated methods over-
comes this problem, but still needs� to be symmetric and
positive defined.

An alternative approach is the Generalized Minimal
Residual (GMRES) algorithm described next.

9.1 GMRES

Let ��� and��� �� denote	-norm and standard inner product.
Consider an approximate solution of the form�� � %,

where�� is an initial guess and% is a member of the Krylov
space� � +�-

�
��� ���� �

���� ���� �

����

�
� in which

�� � � � ���� and(is the dimension of�. GMRES
algorithm determines% such that the	-norm of the residual
���� ��� � %�� is minimized [17]. To achieve this goal,
let us firstly consider the procedure bellow.

Modified Gram-Schmidt procedure.
�� �

�
�
�� �

For
 �
� ���� (
�
����� ����
For � �
� ����

2��� �
$
�
����� ��

&
�

�
�������

���� �2����� �
���� �

�
�����

�
�
�

�
����

�
�
�
�

�

Let3
 � ���� ��� ���� �
�. Then it can be shown that:

�3
 � 3
���
�

where�
 is the following�(�
� � (upper Hessenberg
matrix:

�
 �

�
�����������

2��� 2��� ��� 2
�� 2
����'''���''' 2��� ��� 2
�� 2
����

�
'''���''' ��� 2
�� 2
����

��� ��� ��� ��� ���

� � ���
'''��
��''' 2
���

� � ��� �
'''��
��'''

�
�����������

Let % �
%

��� ���� and� � ����� � �� ���� ��	where
� has(�
 entries. Note that�� � 3
���. Thus:

���� ��� � %�� �
''''''�� ��

�
�
�

���

����

�
�
'''''' �

��� ��3
�� � �3
�� ����
��� � ����
�� �
Thus, the minimization problem can be written as:

�

% � �

���� ��� � %�� � �

� � �

����
�� �

The minimization problem can be solved efficiently by
observing that�
 is almost triangular. Therefore, the Q-R
algorithm is explored to obtain the minimizer [6]. The key
idea of the Q-R algorithm is to obtain an orthogonal matrix:

4 � 4
4
�����4��

where each4� � � �
� 	� ���� (is a�(�
���(�
� Givens
rotation of the form:

4� �

�
���
"��� �

�� +�
�+� ��

�
"
��

�
��� �

in which"� is the identity matrix of dimension
, and�� and
+� satisfies�� � +� �
 and are constructed such that the
matrix:

�

�� 4�
�

is upper triangular [6]. Let
�
�� 4��. Then:

����
�� �
''''4	

�
�
� � �

� �

�'''' �
''''�� � �

� �

''''
Consequently:

�

� � �

''''�� � �

� �

'''' � (((��
��(((�
and� satisfies:

�
��������

�

����

�

���� ���
�

���
��
�

���

�
�

���� ���
�

���
��
�

���
��
��� ��� ��� ��� ���

� � ���
�

�
���
��
�

�
���

� � ��� �
�

�
�

�
��������

�
�����
��
��
���
�
��
�

�
����� �

(50)

�

�
�������

�
��
�
��
���
�
�
��
�
�

�
�������

which is simply solved by back-substitution.
The main loop of the GMRES method can be summa-

rized as follows: (1) Calculation of an orthonormal basis for
the Krylov space by the modified Gram-Schmidt procedure;
(2) Triangulation of the Hessenberg matrix by the Q-R al-
gorithm; (3) Back-substitution to solve (50); (4) Evaluate

the error
(((��
��(((�

10 Acknowledgments

We would like to acknowledge CNPq for the financial sup-
port for this work.

References

[1] C. Adamis.Artificial Life. Springer-Verlag New York,
Inc., 1998.

[2] R. Beale and T. Jackson.Neural Computing. MIT
Press, 1994.

[3] C. Chapra and R.P. Canale.Numerical Methods
for Engineers. MacGraw-Hill International Editions,
1988.

[4] C. Cohen-Tannoudji, B. Diu, and F. Laloe.Quantum
Mechanics, volume I. Wiley, New York, 1977, 1977.

[5] D. E. Goldberg. Genetic Algorithms in Search, Op-
timization, and Machine Learning. Addison-Wesley,
1989.

[6] G. H. Golub and C. F. Van Loan.Matrix Computa-
tions. Johns Hopkins University Press, 1985.

[7] J. J. Grefenstette, editor.Genetic Algorithms for Ma-
chine Learning. Kluwer Academic Publishers, 1994.

[8] K. Hoffman and R. Kunze.Linear Algebra. Prentice-
Hall, 1961.

[9] J. H. Holland. Adaptation in Natural and Artificial
Systems. MIT Press, Cambridge, MA, 1975.

[10] Anil K. Jain. Fundamentals of Digital Image Process-
ing. Prentice-Hall, Inc., 1989.

[11] K.A. De Jong.An Analysis of the Behaviour of a Class
of Genetic Adaptive Systems. PhD thesis, University
of Michigan, Ann Arbor, 1975.

[12] K.A. De Jong. Introduction to the second special issue
on genetic algorithms.Machine Learning, 5(4):351–
353, 1990.

[13] Melanie Mitchell. An introduction to genetic algo-
rithms. MIT Press, 1996.

[14] M. Nielsen and I. Chuang.Quantum Computation and
Quantum Information. Cambridge University Press.,
December 2000.

[15] M. Oskin, F. Chong, and I. Chuang. A practical archi-
tecture for reliable quantum computers.IEEE Com-
puter, 35(1):79–87, 2002.

[16] J. Preskill. Quantum computation - caltech course
notes. Technical report, 2001.

[17] F. Shakib, T. J. Hughes, and Z. Johan. A multi-
element group preconditioned gmres algorithm for
nonsymmetric systems arising in finite element anal-
ysis. Computer Methods in Applied Mechanics and
Eng., 75:415–456, 1989.

[18] J. Sotomayor.Lições de Equações Diferenciais Or-
dinárias. Projeto Euclides, Gr´afica Editora Hamburgo
Ltda, São Paulo, 1979.

[19] Ya. Z. Tsypkin and Z. J. Nikolic.Foundations of the
Theory of Learning Systems. Academic Press, New
York and London, 1973.

[20] Dan Ventura. Learning quantum operators. InPro-
ceedings of the International Conference on Compu-
tational Intelligence and Neuroscience, pages 750–
752, March 2000.

[21] Alden H. Wright. Genetic algorithms for real parame-
ter optimization. In Gregory J. Rawlins, editor,Foun-
dations of genetic algorithms, pages 205–218. Mor-
gan Kaufmann, San Mateo, CA, 1991.

